Вторичной структурой белковой. Вторичная структура белка двояка. Смотреть что такое "Вторичная структура белков" в других словарях








Для всякого белка характерна, помимо первичной, еще и определенная вторичная структура . Обычно белковая молекула напоминает растянутую пружину.

Это так называемая а-спираль, стабилизируемая множеством водородных связей, возникающих между находящимися поблизости друг от друга СО- и NH-группами. Атом водорода NH-группы одной аминокислоты образует такую связь с атомом кислорода СО-группы другой аминокислоты, отстоящей от первой на четыре аминокислотных остатка.

Таким образом аминокислота 1 оказывается связанной с аминокислотой 5, аминокислота 2 - с аминокислотой 6 и т. д. Рентгеноструктурный анализ показывает, что на один виток спирали приходится 3,6 аминокислотного остатка.

Полностью а-спиральную конформацию и, следовательно, фибриллярную структуру имеет белок кератин. Это структурный белок волос, шерсти, ногтей, клюва, перьев и рогов, входящий также в состав кожи позвоночных.

Твердость и растяжимость кератина варьируют в зависимости от числа дисульфидных мостиков между соседними полипептидными цепями (от степени сшивки цепей).

Теоретически все СО- и NH-группы могут участвовать в образовании водородных связей , так что а-спираль - это очень устойчивая, а потому и весьма распространенная конформация. Участки а-спирали в молекуле напоминают жесткие стержни. Тем не менее большинство белков существует в глобулярной форме, в которой также имеются участки (3-слоя (см. ниже) и участки с нерегулярной структурой.

Объясняется это тем, что образованию водородных связей препятствует ряд факторов: наличие некоторых аминокислотных остатков в полипептидной цепи, наличие дисульфидных мостиков между различными участками одной и той же цепи и, наконец, тот факт, что аминокислота пролин вообще неспособна образовывать водородные связи.

Бета-Слой, или складчатый слой - это другой тип вторичной структуры. Белок шелка фиброин, выделяемый шелкоотделительными железами гусениц шелкопряда при завивке коконов, представлен целиком именно этой формой. Фиброин состоит из ряда полипептидных цепей, вытянутых сильнее, чем цепи с конформацией альфа-спирали .

Эти цепи уложены параллельно, но соседние цепи по своему направлению противоположны одна другой (антипараллельны). Они соединены друг с другом при помощи водородных связей , возникающих между С=0- и NH-группами соседних цепей. В этом случае в образовании водородных связей также принимают участие все NH- и С=0-группы, т. е. структура тоже весьма стабильна.

Такая конформация полипептидных цепей называется бета-конформацией , а структура в целом - складчатым слоем. обладает высокой прочностью на разрыв и не поддается растяжению, но подобная организация полипептидных цепей делает шелк очень гибким. В глобулярных белках полипептидная цепь может складываться на себя, и тогда в этих точках глобулы возникают участки, имеющие структуру складчатого слоя.

Еще один способ организации полипептидных цепей мы находим у фибриллярного белка коллагена. Это тоже структурный белок, обладающий подобно кератину и фиброину высокой прочностью на разрыв. У коллагена три полипептидные цепи свиты вместе, как пряди в канате, образуя тройную спираль. В каждой полипептидной цепи этой сложной спирали, называемой тропоколлагеном, содержится около 1000 аминокислотных остатков. Отдельная полипептидная цепь представляет собой свободно свернутую спираль (но не а-спираль;).

Три цепи удерживаются вместе водородными связями . Из многих тройных спиралей, располагающихся параллельно друг другу и удерживаемых вместе ковалентными связями между соседними цепями, образуются фибриллы. Они в свою очередь объединяются в волокна. Структура коллагена формируется, таким образом, поэтапно - на нескольких уровнях - подобно структуре целлюлозы. Коллаген также невозможно растянуть, и это его свойство существенно для той функции, которую он выполняет, например, в сухожилиях, костях и других видах соединительной ткани.

Белки , существующие только в полностью спирализованной форме, подобно кератину и коллагену, представляют собой исключение среди прочих белков.

Л инейные полипептидные цепи индивидуальных белков за счёт взаимодействия функциональных групп аминокислот приобретают определённую пространственную трёхмерную структуру, называемую "конформация". Все молекулы индивидуальных белков (т.е. имеющих одинаковую первичную структуру) образуют в растворе одинаковую конформацию. Следовательно, вся информация, необходимая для формирования пространственных структур, находится в первичной структуре белков.

В белках различают 2 основных типа конформации полипептидных цепей: вторичную и третичную структуры.

2. Вторичная структура белков - пространственная структура, образующаяся в результате взаимодействия между функциональными группами пептидного остова.

При этом пептидные цепи могут приобретать регулярные структуры двух типов: α-спирали

β-структрура Под β-структурой понимают фигуру, подобную листу, сложенному «гармошкой». Фигура формируется за счет образования множества водородных связей между атомами пептидных групп линейных областей одной полипептидной цепи, делающей изгибы, или между разными полипептидными группами.


Связи - водородные, они стабилизируют отдельные фрагменты макромолекул.

3. Третичная структура белков - трёхмерная пространственная структура, образующаяся за счёт взаимодействий между радикалами аминокислот, которые могут располагаться на значительном расстоянии друг от друга в полипептидной цепи.

Структурно состоит из элементов вторичной структуры, стабилизированных различными типами взаимодействий, в которых гидрофобные взаимодействия играют важнейшую роль
стабилизации третичной структуры белка принимают участие:

· ковалентные связи (между двумя остатками цистеина - дисульфидные мостики);

· ионные связи между противоположно заряженными боковыми группами аминокислотных остатков;

· водородные связи;

· гидрофильно-гидрофобные взаимодействия. При взаимодействии с окружающими молекулами воды белковая молекула «стремится» свернуться так, чтобы неполярные боковые группы аминокислот оказались изолированы от водного раствора; на поверхности молекулы оказываются полярные гидрофильные боковые группы.

4. Четвертичной структурой называют взаимное расположение нескольких полипептидных цепей в составе единого белкового комплекса. Белковые молекулы, входящие в состав белка с четвертичной структурой, образуются на рибосомах по отдельности и лишь после окончания синтеза образуют общую надмолекулярную структуру. В состав белка с четвертичной структурой могут входить как идентичные, так и различающиеся полипептидные цепочки. В стабилизации четвертичной структуры принимают участие те же типы взаимодействий, что и в стабилизации третичной . Надмолекулярные белковые комплексы могут состоять из десятков молекул.


Роль.

Образование пептидов в организме происходит в течение нескольких минут, химический же синтез в условиях лаборатории - достаточно длительный процесс, который может занимать несколько дней, а разработка технологии синтеза – несколько лет. Однако, несмотря на это, существуют довольно весомые аргументы в пользу проведения работ по синтезу аналогов природных пептидов. Во-первых, путём химической модификации пептидов возможно подтвердить гипотезу первичной структуры. Аминокислотные последовательности некоторых гормонов стали известны именно благодаря синтезу их аналогов в лаборатории.

Во-вторых, синтетические пептиды позволяют подробнее изучить связь между структурой аминокислотной последовательности и её активностью. Для выяснения связи между конкретной структурой пептида и его биологической активностью была проведена огромная работа по синтезу не одной тысячи аналогов. В результате удалось выяснить, что замена лишь одной аминокислоты в структуре пептида способна в несколько раз увеличить его биологическую активность или изменить её направленность. А изменение длины аминокислотной последовательности помогает определить расположение активных центров пептида и участка рецепторного взаимодействия.

В-третьих, благодаря модификации исходной аминокислотной последовательности, появилась возможность получать фармакологические препараты. Создание аналогов природных пептидов позволяет выявить более «эффективные» конфигурации молекул, которые усиливают биологическое действие или делают его более продолжительным.

В-четвёртых, химический синтез пептидов экономически выгоден. Большинство терапевтических препаратов стоили бы в десятки раз больше, если бы были сделаны на основе природного продукта.

Зачастую активные пептиды в природе обнаруживаются лишь в нанограммовых количествах. Плюс к этому, методы очистки и выделения пептидов из природных источников не могут полностью разделить искомую аминокислотную последовательность с пептидами противоположного или же иного действия. А в случае специфических пептидов, синтезируемых организмом человека, получить их возможно лишь путём синтеза в лабораторных условиях.

57. Классификация белков: простые и сложные, глобулярные и фибриллярные, мономерные и олигомерные. Функции белков в организме .

Классификация по типу строения

По общему типу строения белки можно разбить на три группы:

1. Фибриллярные белки - образуют полимеры, их структура обычно высокорегулярна и поддерживается, в основном, взаимодействиями между разными цепями. Они образуют микрофиламенты, микротрубочки, фибриллы, поддерживают структуру клеток и тканей. К фибриллярным белкам относятся кератин и коллаген.

2. Глобулярные белки - водорастворимы, общая форма молекулы более или менее сферическая.

3. Мембранные белки - имеют пересекающие клеточную мембрану домены, но части их выступают из мембраны в межклеточное окружение и цитоплазму клетки. Мембранные белки выполняют функцию рецепторов, то есть осуществляют передачу сигналов, а также обеспечивают трансмембранный транспорт различных веществ. Белки-транспортёры специфичны, каждый из них пропускает через мембрану только определённые молекулы или определённый тип сигнала.

Простые белки , Сложные белки

Помимо пептидных цепей, в состав многих белков входят и неаминокислотные группы, и по этому критерию белки делят на две большие группы - простые и сложные белки (протеиды). Простые белки состоят только из полипептидных цепей, сложные белки содержат также неаминокислотные, или простетические, группы.

Простые.

Среди глобулярных белков можно выделить:

1. альбумины - растворимы в воде в широком интервале рН (от 4 до 8,5), осаждаются 70-100%-ным раствором сульфата аммония;

2. полифункциональные глобулины с большей молекулярной массой, труднее растворимы в воде, растворимы в солевых растворах, часто содержат углеводную часть;

3. гистоны - низкомолекулярные белки с высоким содержанием в молекуле остатков аргинина и лизина, что обусловливает их основные свойства;

4. протамины отличаются еще более высоким содержанием аргинина (до 85 %), как и гистоны, образуют устойчивые ассоциаты с нуклеиновыми кислотами, выступают как регуляторные и репрессорные белки - составная часть нуклеопротеинов;

5. проламины характеризуются высоким содержанием глутаминовой кислоты (30-45 %) и пролина (до 15 %), нерастворимы в воде, растворяются в 50-90 % этаноле;

6. глутелины содержат около 45 % глутаминовой кислоты, как и проламины, чаще содержатся в белках злаков.

Фибриллярные белки характеризуются волокнистой структурой, практически нерастворимы в воде и солевых растворах. Полипептидные цепи в молекулах расположены параллельно одна другой. Участвуют в образовании структурных элементов соединительной ткани (коллагены, кератины, эластины).

Сло́жные белки́

(протеиды , холопротеины ) - двухкомпонентные белки, в которых помимо пептидных цепей (простого белка) содержится компонент неаминокислотной природы - простетическая группа. При гидролизе сложных белков, кроме аминокислот, освобождается небелковая часть или продукты её распада.

В качестве простетической группы могут выступать различные органические (липиды, углеводы) и неорганические (металлы) вещества.

В зависимости от химической природы простетических групп среди сложных белков выделяют следующие классы :

· Гликопротеиды, содержащие в качестве простетической группы ковалентно связанные углеводные остатки и их подкласс - протеогликаны, с мукополисахаридными простетическими группами. В образовании связи с углеводными остатками обычно участвуют гидроксильные группы серина или треонина. Большая часть внеклеточных белков, в частности, иммуноглобулины - гликопротеиды. В протеогликанах углеводная часть составляет ~95 %, они являются основным компонентом межклеточного матрикса.

· Липопротеиды, содержащие в качестве простетической части нековалентно связанные липиды. Липопротеиды, образованные белками-аполипопротеинами связывающимися с ними липидами и выполняют функцию транспорта липидов.

· Металлопротеиды, содержащие негемовые координационно связанные ионы металлов. Среди металлопротеидов есть белки, выполняющие депонирующие и транспортные функции (например, железосодержащие ферритин и трансферрин) и ферменты (например, цинксодержащая карбоангидраза и различные супероксиддисмутазы, содержащие в качестве активных центров ионы меди, марганца, железа и других металлов)

· Нуклеопротеиды, содержащие нековалентно связанные ДНК или РНК, в частности, хроматин, из которого состоят хромосомы, является нуклеопротеидом .

· Фосфопротеиды, содержащие в качестве простетической группы ковалентно связанные остатки фосфорной кислоты. В образовании сложноэфирной связи с фосфатом участвуют гидроксильные группы серина или треонина, фосфопротеинами являются, в частности, казеин молока :

· Хромопротеиды - собирательное название сложных белков с окрашенными простетическими группами различной химической природы. К ним относится множество белков с металлсодержащейпорфириновой простетической группой, выполняющие разнообразные функции - гемопротеины (белки, содержащие в качестве простетической группы гем - гемоглобин, цитохромы и др.), хлорофиллы;флавопротеиды с флавиновой группой, и др.

1. Структурная функция

2. Защитная функция

3. Регуляторная функция

4. Сигнальная функция

5. Транспортная функция

6. Запасная (резервная) функция

7. Рецепторная функция

8. Моторная (двигательная) функция

П ЕРВИЧНАЯ СТРУКТУРА БЕЛКОВ

Первичная структура белка несет информацию о его пространственной структуре.

1.Аминокислотные остатки в пептидной цепи белков чередуются не случайным образом, а распо-ложены в определенном порядке. Линейная после-довательность аминокислотных остатков в полипеп-тидной цепи называется первичной структурой белка.

2. Первичная структура каждого индивидуально-го белка закодирована в молекуле ДНК (участке, называемом геном) и реализуется в ходе транс-крипции (переписывания информации на мРНК) и трансляции (синтез пептидной цепи).

3. Каждый из 50 000 индивидуальных белков ор-ганизма человека имеет уникальную для данного индивидуального белка первичную структуру. Все молекулы индивидуального белка (например, аль-бумина) имеют одинаковое чередование амино-кислотных остатков, отличающее альбумин от лю-бого другого индивидуального белка.

4. Последовательность аминокислотных остат-ков в пептидной цепи можно рассматривать как
форму запи

си некоторой информации.

Эта информация диктует пространственную ук-ладку длинной линейной пептидной цепи в более компактную трехмерную структуру.

КОНФОРМАЦИЯ БЕЛКОВ

1. Линейные полипептидные цепи индивидуаль-ных белков за счет взаимодействия функциональ-ных групп аминокислот приобретают определен-ную пространственную трехмерную структуру, или конформацию. В глобулярных белках различают
два основных типа конформации пептидных цепей: вторичную и третичную структуры.

ВТОРИЧНАЯ СТРУКТУРА БЕЛКОВ

2. Вторичная структура белков - это пространст-венная структура, образующаяся в результате взаимодействий между функциональными груп- пами пептидного остова. При этом пептидная цепь может приобретать регулярные структуры двух типов: ос-спирали и р-структуры.

Рис. 1.2. Вторичная структура белка — а-спираль.

В ос-спирали водородные связи образуются между атомом кислорода карбоксильной группы и водородом амидного азота пептидного остова через 4 аминокислоты; боковые цепи аминокислотных остатков располагаются по периферии спирали, не участвуя в образовании водородных связей, фор-мирующих вторичную структуру (рис. 1.2).

Большие объемные остатки или остатки с одина-ковыми отталкивающимися зарядами препятству- ют формированию а-спирали.

Остаток пролина прерывает а-спираль благодаря его кольцевой структуре и невозможности образо-вания водородной связи из-за отсутствия водорода у атома азота в пептидной цепи.

B -Структура формируется между линейными областями одной полипептидной цепи, образуя при этом складки, или между разными полипеп-тидными цепями. Полипептидные цепи или их части могут формировать параллельные (N- и С-концы взаимодействующих пептидных цепей совпадают) или антипараллельные (N- и С-концы взаимодействующих пептидных цепей лежат в противоположных направлениях) р-структуры (рис. 1.3).

В белках также встречаются области с нерегу-лярной вторичной структурой, которые называ-ются беспорядочными клубками, хотя эти структу-ры не так сильно изменяются от одной молекулы белка к другой.

ТРЕТИЧНАЯ СТРУКТУРА БЕЛКОВ

3. Третичная структура белка — это трехмерная пространственная структура, образующаяся за счет взаимодействий между радикалами аминокислот, которые могут располагаться на значительном рас-стоянии друг от друга в пептидной цепи.

Рис. 1.3. Антипараллельная (бета-структура.)


Гидрофобные радикалы аминокислот имеют тенденцию к объединению внутри глобулярной структуры белков с помощью так называемых гид- рофобных взаимодействий и межмолекулярных ван-дер-ваальсовых сил, образуя плотное гидро-фобное ядро. Гидрофильные ионизированные и неионизированные радикалы аминокислот в ос-новном расположены на поверхности белка и оп-ределяют его растворимость в воде.

Гидрофильные аминокислоты, оказавшиеся внут-ри гидрофобного ядра, могут взаимодействовать друг с другом с помощью ионных и водородных свя-зей (рис. 1.4).



Рис. 1.4. Типы связей, возникающие между радикалами аминокислот при формировании третичной структуры белка. 1 — ионная связь; 2 — водородная связь; 3 — гидрофобные взаимодействия; 4 — дисульфидная связь.



Рис. 1.5. Дисульфидные связи в структуре инсулина человека.

Ионные, водородные и гидрофобные связи отно-сятся к числу слабых: их энергия ненамного пре-вышает энергию теплового движения молекул при комнатной температуре.

Конформация белка поддерживается за счет воз-никновения множества таких слабых связей.

Конформационная лабильность белков — это спо-собность белков к небольшим изменениям кон-формации за счет разрыва одних и образования других слабых связей.

Третичная структура некоторых белков стабили-зирована дисульфидными связями, образующимися за счет взаимодействия SH-групп двух остатков цистеина.

Большинство внутриклеточных белков не имеет ковалентных дисульфидных связей. Их наличие характерно для секретируемых клеткой белков, на-пример дисульфидные связи имеются в молекулах инсулина, иммуноглобулинов.

Инсулин — белковый гормон, синтезирующийся в р-клетках поджелудочной железы. Секретируется клетками в ответ на повышение концентрации глю-козы в крови. В структуре инсулина имеются 2 ди-сульфидные связи, соединяющие 2 полипептидные А- и В-цепи, и 1 дисульфидная связь внутри А-цепи (рис. 1.5).

Особенности вторичной структуры белков ока-зывают влияние на характер межрадикальных вза-имодействий и третичную структуру.

4. Некоторый специфический порядок чередова-ния вторичных структур наблюдается во многих разных по структуре и функциям белках и носит название супервторичной структуры.

Такие упорядоченные структуры часто обозначают как структурные мотивы, которые имеют специфические названия: «а-спираль—поворот—а-спи-раль», «лейциновая застежка-молния», «цинковые пальцы», «структура Р-бочонка» и др.

По наличию а-спиралей и р-структур глобуляр-ные белки могут быть разделены на 4 категории:

1.В первую категорию включены белки, в кото-рых имеются только а-спирали, например миогло-бин и гемоглобин (рис. 1.6).

2. Во вторую категорию включены белки, в кото-рых имеются а-спирали и (3-структуры. При этом а- и (3-структуры часто образуют однотипные со-четания, встречающиеся в разных индивидуаль-ных белках.

Пример. Супервторичная структура типа Р-бочонка.



Фермент триозофосфатизомераза имеет супер-вторичную структуру типа Р-бочонка, где каждая (3-структура расположена внутри р-бочонка и свя-зана с а-спиральным участком полипептидной цепи, находящимся на поверхности молекулы (рис. 1.7, а).

Рис. 1.7. Супервторичная структура типа р-бочонка.

а — триозофосфатизомераза; б — домен пиру ватки назы.

Такая же супервторичная структура обнаружена в одном из доменов молекулы фермента пируваткиназы (рис. 1.7, б). Доменом называют часть молеку-лы, по структуре напоминающую самостоятель-ный глобулярный белок.

Еще один пример формирования супервторич-ной структуры, имеющей Р-структуры и ос-спира-ли. В одном из доменов лактатдегидрогеназы (ЛДГ) и фосфоглицераткиназы в центре располо-жены Р-структуры полипептидной цепи в виде скрученного листа и каждая р-структура связана с а-спиральным участком, расположенным на по-верхности молекулы (рис. 1.8).

Рис. 1.8. Вторичная структура, характерная для многих фер- ментов.

а -домен лактатдегидрогеназы; б— домен фосфоглицераткиназы.

3. В третью категорию включены белки, имею- щие только вторичную р-структуру. Такие структу-ры обнаружены в иммуноглобулинах, в ферменте супероксиддисмутазе (рис. 1.9).

Рис. 1.9. Вторичная структура константного домена им-муноглобулина (а)

и фермента супероксиддисмутазы (б).

4. В четвертую категорию включены белки, имеющие в своем составе лишь незначительное ко-личество регулярных вторичных структур. К таким белкам можно отнести небольшие богатые цисти-ном белки или металлопротеины.

В ДНК-связывающих белках имеются общие виды супервторичных структур: «ос-спираль—поворот— ос-спираль», «лейциновая застежка-молния», «цинко- вые пальцы». ДНК-связывающие белки содержат центр связывания, комплементарный участку ДНК с определенной нуклеотидной последовательностью. Эти белки участвуют в регуляции действия генов.

«а- Спираль—поворот—а-спираль»

Рис. 1.10. Связывание супервторичной

структуры «а-спи-раль—поворот—а-спираль»

в большой бороздке Д

Двуспиральная структура ДНК имеет 2 бороздки: большую и малую. Боль шая бороздка хорошо при-способлена для связывания белков, имеющих не-большие ос-спиральные участки.

В данный структурный мотив входят 2 ос-спирали: одна более короткая, другая более длинная, соеди-ненные поворотом полипептидной цепи (рис. 1.10).

Более короткая а-спираль располагается попе-рек бороздки ДНК, а более длинная а-спираль на-ходится в большой бороздке, образуя нековалент-ные специфические связи радикалов аминокислот с нуклеотидами ДНК.

Часто белки, имеющие такую структуру, образу-ют димеры, в результате олигомерный белок имеет 2 супервторичные структуры.

Они располагаются на определенном расстоянии друг от друга и выступают над поверхностью белка (рис. 1.11).

Две такие структуры могут связываться с ДНК в смежных областях больших бороздок

без значи-тельных изменений в структуре белков.

«Цинковый палец»

«Цинковый палец» — фрагмент белка, содержа-щий около 20 аминокислотных остатков (рис. 1.12).

Атом цинка связан с радикалами 4 аминокислот: 2 остатков цистеина и 2 — гистидина.

В некоторых случаях вместо остатков гистидина находятся остатки цистеина.

Рис. 1.12. Структура участка ДНК-связывающих

белков в форме «цинкового пальца».


Этот участок белка образует а-спираль, которая может специфично связываться с регуляторными участками большой бороздки ДНК.

Специфичность связывания индивидуального регуляторного ДНК-связывающего белка зависит от последовательности аминокислотных остатков, расположенных в области «цинкового пальца».

«Лейциновая застежка-молния»

Взаимодействующие белки имеют а-спиральный участок, содержащий по крайней мере 4 ос-татка лейцина.

Лейциновые остатки расположены через 6 ами-нокислот один от другого.

Так как каждый виток а-спирали содержит 3,6-аминокислотного остатка, радикалы лейцина находятся на поверхности каждого второго витка.

Лейциновые остатки а-спирали одного белка могут взаимодействовать с лейциновыми остатка-ми другого белка (гидрофобные взаимодействия), соединяя их вместе (рис. 1.13).

Многие ДНК-связывающие белки взаимодейст-вуют с ДНК в виде олигомерных структур, где субъединицы связываются друг с другом «лейци-новыми застежками». Примером таких белков мо-гут служить гистоны.

Гистоны — ядерные белки, в состав которых вхо-дит большое количество положительно заряжен-ных аминокислот — аргинина и лизина (до 80%).

Молекулы гистонов объединяются в олигомер-ные комплексы, содержащие 8 мономеров с по-мощью «лейциновых застежек», несмотря на силь-ный положительный заряд этих молекул.

Резюме. Все молекулы индивидуального белка, имеющие идентичную первичную структуру, при-обретают в растворе одинаковую конформацию.

Таким образом, характер пространственной уклад-ки пептидной цепи определяется аминокислотным составом и чередованием аминокислотных остатков в цепи. Следовательно, конформация — такая же специфическая характеристика индивидуального белка, как и первичная структура.

§ 8. ПРОСТРАНСТВЕННАЯ ОРГАНИЗАЦИЯ БЕЛКОВОЙ МОЛЕКУЛЫ

Первичная структура

Под первичной структурой белка понимают количество и порядок чередования аминокислотных остатков, соединенных друг с другом пептидными связями, в полипептидной цепи.

Полипептидная цепь на одном конце содержит свободную, не участвующую в образовании пептидной связи, NH 2 -группу, этот участок обозначается как N–конец . На противоположной стороне располагается свободная, не участвующая в образовании пептидной связи, НООС-группа, это – С-конец . За начало цепи принимается N-конец, именно с него начинается нумерация аминокислотных остатков:

Аминокислотную последовательность инсулина установил Ф. Сэнгер (Кембриджский университет). Этот белок состоит из двух полипептидных цепей. Одна цепь состоит из 21 аминокислотного остатка, другая цепь – из 30. Цепи связаны двумя дисульфидными мостиками (рис.6).

Рис. 6. Первичная структура инсулина человека

На расшифровку этой структуры было затрачено 10 лет (1944 – 1954 гг.). В настоящее время первичная структура определена у многих белков, процесс ее определения автоматизирован и не представляет собой серьезную проблему для исследователей.

Информация о первичной структуре каждого белка закодирована в гене (участке молекулы ДНК) и реализуется в ходе транскрипции (переписывании информации на мРНК) и трансляции (синтеза полипептидной цепи). В связи с этим можно установить первичную структуру белка также по известной структуре соответствующего гена.

По первичной структуре гомологичных белков можно судить о таксономическом родстве видов. К гомологичным белкам относятся те белки, которые у разных видов выполняют одинаковые функции. Такие белки имеют сходные аминокислотные последовательности. Например, белок цитохром С у большинства видов имеет относительную молекулярную массу около 12500 и содержит около 100 аминокислотных остатков. Различия в первичной структуре цитохрома С двух видов пропорциональны филогенетическому различию между данными видами. Так цитохромы С лошади и дрожжей отличаются по 48 аминокислотным остаткам, курицы и утки – по двум, цитохромы же курицы и индейки идентичны.

Вторичная структура

Вторичная структура белка формируется вследствие образования водородных связей между пептидными группами. Различают два типа вторичной структуры: α-спираль и β-структура (или складчатый слой) . В белках могут присутствовать также участки полипептидной цепи, не образующие вторичную структуру.

α-Спираль по форме напоминает пружину. При формировании α-спирали атом кислорода каждой пептидной группы образует водородную связь с атомом водорода четвертой по ходу цепи NH-группы:

Каждый виток спирали связан со следующим витком спирали несколькими водородными связями, что придает структуре значительную прочность. α-Спираль обладает следующими характеристиками: диаметр спирали 0,5 нм, шаг спирали – 0,54 нм, на один виток спирали приходится 3,6 аминокислотных остатка (рис. 7).

Рис. 7. Модель a-спирали, отражающая ее количественные характеристики

Боковые радикалы аминокислот направлены наружу от -спирали (рис. 8).

Рис. 8. Модель -спирали, отражающая пространственное расположение боковых радикалов

Из природных L-аминокислот может быть построена как правая, так и левая -спираль. Для большинства природных белков характерна правая спираль. Из D-аминокислот также можно построить как левую, так и правую спираль. Полипептидная же цепь, состоящая из смеси D-и L-аминокислотных остатков, не способна образовывать спираль.

Некоторые аминокислотные остатки препятствуют образованию α-спирали. Например, если в цепи подряд расположено несколько положительно или отрицательно заряженных аминокислотных остатков, такой участок не примет α-спиральной структуры из-за взаимного отталкивания одноименно заряженных радикалов. Затрудняют образование -спирали радикалы аминокислотных остатков, имеющих большие размеры. Препятствием для образования α-спирали, является также наличие в полипептидной цепи остатков пролина (рис. 9). В остатке пролина при атоме азота, образующем пептидную связь с другой аминокислотой, нет атома водорода.

Рис. 9. Остаток пролина препятствует образованию -спирали

Поэтому остаток пролина, входящий в состав полипептидной цепи, не способен образовывать внутрицепочечную водородную связь. Кроме того, атом азота в пролине входит в состав жесткого кольца, что делает невозможным вращение вокруг связи N – C и образование спирали.

Кроме α-спирали описаны и другие типы спиралей. Однако они встречаются редко, в основном на коротких участках.

Образование водородных связей между пептидными группами соседних полипептидных фрагментов цепей приводит к формированию β-структуры, или складчатого слоя:

В отличие от α-спирали складчатый слой имеет зигзагообразную форму, похожую на гармошку (рис. 10).

Рис. 10. β-Структура белка

Различают параллельные и антипараллельные складчатые слои. Параллельные β-структуры образуются между участками полипептидной цепи, направления которых совпадают:

Антипаралельные β-структуры образуются между противоположно направленными участками полипептидной цепи:


β-Структуры могут формироваться более чем между двумя полипептидными цепями:


В составе одних белков вторичная структура может быть представлена только α-спиралью, в других – только β-структурами (параллельными, или антипараллельными, или и теми, и другими), в третьих наряду с α-спирализованными участками могут присутствовать и β-структуры.

Третичная структура

У многих белков вторичноорганизованные структуры (α-спирали, -структуры) свернуты определенным образом в компактную глобулу. Пространственная организация глобулярных белков носит название третичной структуры. Таким образом, третичная структура характеризует трехмерное расположение участков полипептидной цепи в пространстве. В формировании третичной структуры принимают участие ионные и водородные связи, гидрофобные взаимодействия, ван-дер-ваальсовы силы. Стабилизируют третичную структуру дисульфидные мостики.

Третичная структура белков определяется их аминокислотной последовательностью. При ее формировании связи могут возникать между аминокислотами, расположенными в полипептидной цепи на значительном расстоянии. У растворимых белков полярные радикалы аминокислот, как правило, оказываются на поверхности белковых молекул и реже – внутри молекулы, гидрофобные радикалы оказываются компактно упакованными внутри глобулы, образуя гидрофобные области.

В настоящее время третичная структура многих белков установлена. Рассмотрим два примера.

Миоглобин

Миоглобин – кислород-связывающий белок с относительной массой 16700. Его функция – запасание кислорода в мышцах. В его молекуле имеется одна полипептидная цепь, состоящая из 153 аминокислотных остатков, и гемогруппа, играющая важную роль в связывании кислорода.

Пространственная организация миоглобина установлена благодаря работам Джона Кендрью и его коллег (рис. 11). В молекуле этого белка присутствуют 8 α-спиральных участков, на их долю приходится 80 % всех аминокислотных остатков. Молекула миоглобина очень компактна, внутри нее может уместиться всего четыре молекулы воды, почти все полярные радикалы аминокислот расположены на внешней поверхности молекулы, большая часть гидрофобных радикалов расположена внутри молекулы, вблизи поверхности находится гем – небелковая группа, ответственная за связывание кислорода.

Рис.11. Третичная структура миоглобина

Рибонуклеаза

Рибонуклеаза – глобулярный белок. Она секретируется клетками поджелудочной железы, это – фермент, катализирующий расщепление РНК. В отличие от миоглобина, в молекуле рибонуклеазы имеется очень мало α-спиральных участков и достаточно большое число сегментов, находящихся в β-конформации. Прочность третичной структуре белка придают 4 дисульфидные связи.

Четвертичная структура

Многие белки состоят из нескольких, двух или более, белковых субъединиц, или молекул, обладающих определенной вторичной и третичной структурами, удерживаемых вместе при помощи водородных и ионных связей, гидрофобных взаимодействий, ван-дер-ваальсовых сил. Такая организация белковых молекул носит название четвертичной структуры , а сами белки называют олигомерными . Отдельная субъединица, или белковая молекула, в составе олигомерного белка называется протомером .

Число протомеров в олигомерных белках может варьировать в широких пределах. Например, креатинкиназа состоит из 2 протомеров, гемоглобин – из 4 протомеров, РНК-полимераза E.coli – фермент, ответственный за синтез РНК, – из 5 протомеров, пируватдегидрогеназный комплекс – из 72 протомеров. Если белок состоит из двух протомеров, его называют димером, четырех – тетрамером, шести – гексамером (рис. 12). Чаще в молекуле олигомерного белка содержится 2 или 4 протомера. В состав олигомерного белка могут входить одинаковые или различные протомеры. Если в состав белка входят два идентичных протомера, то это – гомодимер , если разные – гетеродимер .


Рис. 12. Олигомерные белки

Рассмотрим организацию молекулы гемоглобина. Основная функция гемоглобина заключается в транспорте кислорода из легких в ткани и углекислого газа в обратном направлении. Его молекула (рис. 13) состоит из четырех полипептидных цепей двух различных типов – двух α-цепей и двух β-цепей и гема. Гемоглобин является белком, родственным миоглобину. Вторичная и третичная структуры миоглобина и протомеров гемоглобина очень сходны. Каждый протомер гемоглобина содержит, как и миоглобин, 8 α-спирализованных участков полипептидной цепи. При этом надо отметить, что в первичных структурах миоглобина и протомера гемоглобина идентичны только 24 аминокислотных остатка. Следовательно, белки, значительно отличающиеся по первичной структуре, могут иметь сходную пространственную организацию и выполнять сходные функции.

Рис. 13. Структура гемоглобина

Под вторичной структурой белка подразумевают конфигурацию полипептидной цепи, т.е. способ свертывания, скручивания (складывание, упаковка) полипептидной цепи в спиральную или какую-либо другую конформацию. Процесс этот протекает не хаотично, а в соответствии с программой, заложенной в первичной структуре белка . Подробно изучены две основные конфигурации полипептидных цепей, отвечающих структурным требованиям и экспериментальным данным:

  • a-спирали,
  • β-структуры.

Наиболее вероятным типом строения глобулярных белков принято считать a -спираль. Закручивание полипептидной цепи происходит по часовой стрелке (правый ход спирали), что обусловлено L-аминокислотным составом природных белков.

Движущей силой в возникновении a-спиралей (так же как и β-структур) является способность аминокислот к образованию водородных связей.

В структуре a-спиралей открыт ряд закономерностей :

  • На каждый виток (шаг) спирали приходится 3,6 аминокислотных остатка.
  • Шаг спирали (расстояние вдоль оси) равен 0,54 нм на виток, а на один аминокислотный остаток приходится 0,15 нм.
  • Угол подъема спирали 26°, через 5 витков спирали (18 аминокислотных остатков) структурная конфигурация полипептидной цепи повторяется. Это означает, что период повторяемости (или идентичности) a-спиральной структуры составляет 2,7 нм.

Другой тип конфигурации полипептидных цепей, обнаруженный в белках волос, шелка, мышц и в других фибриллярных белках, получил название β-структуры. В этом случае две или более линейные полипептидные цепи, расположенные параллельно или, чаще, антипараллельно, прочно связываются межцепочечными водородными связями между -NH- и -СО-группами соседних цепей, образуя структуру типа складчатого слоя.

Схематическое изображение β-структуры полипептидных цепей.

В природе существуют белки, строение которых, однако, не соответствует ни β-, ни a-структуре. Типичным примером таких белков является коллаген – фибриллярный белок, составляющий основную массу соединительной ткани в организме человека и животных.

Методами рентгеноструктурного анализа в настоящее время доказано существование еще двух уровней структурной организации белковой молекулы, оказавшихся промежуточными между вторичной и третичной структурами. Это так называемые надвторичные структуры и структурные домены.

Надвторичные структуры представляют собой агрегаты полипептидных цепей, обладающих собственной вторичной структурой и образующихся в некоторых белках в результате их термодинамической или кинетической стабильности. Так, в глобулярных белках открыты (βхβ)-элементы (представлены двумя параллельными β-цепями, связанными сегментом х), βaβaβ-элементы (представлены двумя сегментами α-спирали, вставленными между тремя параллельными β-цепями) и др.

Доменное строение глобулярного белка (флаводоксина) (по А. А. Болдыреву)

Домен – это компактная глобулярная структурная единица внутри полипептидной цепи. Домены могут выполнять разные функции и подвергаться складыванию (свертыванию) в независимые компактные глобулярные структурные единицы, соединенные между собой гибкими участками внутри белковой молекулы.