Твердое ракетное топливо. Твердотопливные ракетные двигатели

Конструкция двигателя на твердом топливе (ТТРД) проста; он состоит из корпуса (камеры сгорания) и реактивного сопла. Камера сгорания является основным несущим элементом двигателя и ракеты в целом. Материалом для его изготовления служит сталь или пластик. Сопло предназначено для разгона газов до определенной скорости и придания потоку требуемого направления. Представляет собой закрытый канал специального профиля. В корпусе находится топливо. Корпус двигателя обычно изготавливают из стали, иногда - из стеклопластика. Часть сопла, которая испытывает наибольшее напряжение, делается из графита, тугоплавких металлов и их сплавов, остальная часть - из стали, пластмасс, графита.

Когда газ, образовавшийся в результате сгорания топлива, проходит через сопло, он вылетает со скоростью, которая может быть больше скорости звука. Как результат - возникновение силы отдачи, направление которой противоположно истечению струи газа. Эту силу называют реактивной , или просто тягой. Корпус и сопло работающих двигателей необходимо защищать от прогорания, для этого в них применяют теплоизолирующие и жаропрочные материалы.

По сравнению с другими типами ракетных двигателей, ТТРД достаточно просто устроен, но имеет пониженную тягу, малое время работы и сложности в управлении. Поэтому, являясь достаточно надежным, он используется, в основном, для создания тяги при «вспомогательных» операциях и в двигателях межконтинентальных баллистических ракет.

До настоящего времени ТТРД редко использовались на борту космических аппаратов. Одна из причин этого - чрезмерное ускорение, которое сообщается конструкции и аппаратуре ракеты при работе твердотопливного двигателя. А для старта ракеты необходимо, чтобы двигатель развивал небольшую по величине тягу в течение продолжительного промежутка времени.

Твердотопливные двигатели позволили США осуществить в 1958 году вслед за СССР запуск первого своего искусственного спутника и вывести в 1959 году космический аппарат на траекторию полета к другим планетам. На сегодняшний день именно в США создан самый мощный космический ТТРД - DM-2, способный развить тягу в 1634 т.

Перспективами развития космических двигателей на твердом топливе являются:

  • улучшение технологий изготовления двигателя;
  • разработка реактивных сопел, которые смогут работать большее время;
  • использование современных материалов;
  • совершенствование составов смесевого топлива и т. д.

Твердотопливный ракетный двигатель (ТТРД) - двигатель, работающий на твердом горючем, наиболее часто используется в ракетной артиллерии и значительно реже в космонавтике; является старейшим из тепловых двигателей.

В качестве топлива в таких двигателях применяют твердое вещество (смесь отдельных веществ), способное гореть без доступа кислорода, выделяя при этом большое количество раскаленных газов, которые используются для создания реактивной тяги.

Существуют два класса горючего для ракет: двухосновные топлива и смесевые топлива.

Двухосновные топлива — представляют собой твердые растворы в нелетучем растворителе (чаще всего нитроцеллюлоза в нитроглицерине). Достоинства - хорошие механические, температурные и другие конструкционные характеристики, сохраняют свои свойства при длительном хранении, просты и дешевы в изготовлении, экологичны (при сгорании нет вредных веществ). Недостаток - сравнительно невысокая мощность и повышенная чувствительность к ударам. Заряды из этого топлива применяются чаще всего в небольших корректирующих двигателях.

Смесевые топлива — современные смеси состоят из перхлората аммония (в качестве окислителя), алюминия в форме порошка и органического полимера - для связывания смеси. Алюминий и полимер играют роль горючего, причем металл является основным источником энергии, а полимер - основным источником газообразных продуктов. Характеризуются нечувствительностью к ударам, высокой интенсивностью горения при низких давлениях и очень трудно гасятся.

Горючее в виде топливных зарядов помещается в камеру сгорания. После старта горение продолжается до полного выгорания горючего, тяга изменяется по законам, обусловленным горением топлива, и практически не регулируется. Изменение тяги достигается использованием топлива с различными скоростями горения и выбором подходящей конфигурации заряда.

При помощи воспламенителя компоненты топлива разогреваются, между ними начинается химическая реакция окисления-восстановления, и топливо постепенно сгорает. При этом образуется газ с высоким давлением и температурой. Давление раскаленных газов при помощи сопла превращается в реактивную тягу, которая по своей величине пропорциональна массе продуктов сгорания и скорости их вылета из сопла двигателя.

При всей простоте точный расчет эксплуатационных параметров ТТРД является сложной задачей.

Твердотопливные двигатели обладают рядом преимуществ перед жидкостными ракетными двигателями: двигатель достаточно прост для изготовления, может храниться долгое время, сохраняя при этом свои характеристики, относительно взрывобезопасен. Однако по мощности они уступают жидкостным двигателям примерно на 10–30 %, имеют сложности при регулировании мощности и большую массу двигателя в целом.

В ряде случаев применяется разновидность ТТРД, в котором один компонент горючего находится в твёрдом состоянии, а второй (чаще всего окислитель) - в жидком.

Для создания реактивной тяги.

Энциклопедичный YouTube

    1 / 5

    Жидкое ракетное топливо - История создания

    Горит ли твёрдое ракетное топливо в вакууме?

    КАК РАБОТАЕТ ДВИГАТЕЛЬ РАКЕТЫ? [ЖРД]

    РДМ-60-5 №36 (НН-Фруктоза-Сорбит-S-Fe2O3 61,4%-25%-8%-5%-0,6%)

    ракетные двигатели

    Субтитры

Основные виды

Гомогенные топлива

Поскольку увеличение толщины горящего свода свыше 10 мм для одноосновных топлив затрудняется из-за длительности удаления летучего растворителя из толстосводных пороховых шашек, из гомогенных топлив наиболее распространены двухосновные топлива - твёрдые коллоидные растворы (как правило, нитроцеллюлозы) в нелетучем растворителе-пластификаторе (обычно в нитроглицерине , но используются и другие взрывчатые вещества, например, ЭГДН , ди- и тринитротолуол). Классическим примером данного вида топлив являются баллиститные ТРТ. Нитрат целлюлозы имеет отрицательный кислородный баланс, нитроглицерин имеет небольшой положительный кислородный баланс. Производство шашек ТРТ данного типа предусматривает проходное прессование на шнековом прессе при температуре 60-80 °С.

К достоинствам таких топлив относятся хорошие механические (предел прочности современных баллиститных топлив составляет 10-20 МПа, что на порядок превосходит смесевые ТРТ ), температурные [ ] и другие конструкционные свойства, высокая стабильность при хранении [ ] , отработанность промышленностью и дешевизна, а также низкое содержание в продуктах горения твёрдых и конденсированных частиц (то есть «бездымность») и экологически вредных веществ (благодаря отсутствию в составе хлора). Недостатками же являются ограниченные возможности повышения удельного импульса и невозможность получения шашек большого размера (диаметром более 1 метра) .

Дымный порох

Исторически первым смесевым топливом был чёрный порох, однако сейчас он применяется в качестве твёрдого ракетного топлива только в пиротехнических изделиях различного назначения и модельных ракетах. Он прост в получении, но имеет низкий удельный импульс, неравномерность горения, гигроскопичен, сложно получить шашки большого размера. При хранении шашек большого размера более 1-3 лет, происходит растрескивание шашки вследствие роста кристаллов селитры и изменения влажности шашки. Образовавшиеся трещины снижают стабильность хранения и могут привести к разрушению шашки при горении. Для повышения стабильности хранения пороховых шашек из дымного пороха, в конце 19-го века в Швеции было предложено заменить часть древесного угля на асфальт-битумную фракцию нефти. Это увеличило срок годности шашек диаметром 200-800 мм почти в 3 раза (до 7 лет для шашек диаметром 200 мм). С освоением промышленностью бездымных порохов, шашки ТРТ диаметром более 40-50 мм не производят из дымных порохов.

Современные смесевые топлива

Смесевые твердые топлива (СТТ) представляют собой смесь твердых горючего и окислителя. Существует большое количество различных смесей пригодных для ракетостроения. Как правило все они создаются вокруг небольшого количества эффективных твердых окислителей, которые комбинируют с разнообразными горючими веществами. Наиболее известные окислители:

  • Перхлораты : аммония (NH 4 ClO 4), лития (LiClO 4), калия (KClO 4).
  • Нитраты (селитры): калия (КNО 3), аммония (NH 4 NO 3) и другие.
  • динитрамид аммония (NH 4 N(NO 2) 2).

В качестве горючего используются:

  • металлы или их сплавы (алюминий , магний , литий , бериллий), гидриды металлов.
  • полимеры и смолы (полиэтилен , полиуретан , полибутадиен, каучук , битум).
  • Другие вещества, например полисульфиды , бор , углерод .

В современных твердотопливных двигателях большой мощности чаще всего применяют смесь перхлората аммония с алюминием и каучуками. Иногда вместо каучуков используют полиуретан, что позволяет повысить срок годности шашки ТРТ и увеличить её жесткость, но, в ущерб технологичности производства. Алюминий является основным источником тепловой энергии благодаря высокой теплотворности реакции окисления. Однако ввиду высокой температуры кипения оксид алюминия в реактивной струе РДТТ является твердым веществом и не совершает термодинамической работы при расширении в сопле. Поэтому основным источником газообразных продуктов является полимерное связующее. Примесь твердых продуктов сгорания ТРТ увеличивает внутреннее трение в реактивной струе газов, что снижает КПД работы РДТТ. Удельный импульс такого топлива около 250-280 секунд.

В ряде военных изделий с высокими ТТХ вместо перхлората аммония иногда применяется динитрамид аммония, дающий больший удельный импульс. Однако он гораздо дороже, требует аккуратного обращения на стадии производства шашки ТРТ и повышает восприимчивость шашки к прострелу и детонации.

Энергетика ТРТ для ряда ракет военного назначения (ЗУР, МБР, УР воздушного боя и пр.) повышается добавкой октогена в ТРТ, это несколько ухудшает эксплуатационные свойства, но позволяет увеличить удельный импульс тяги ТРТ .

В последние десятилетия для повышения энергетических свойств твёрдых ракетных топлив, а также уменьшения вредного влияния на окружающую среду, ведётся интенсивный поиск бесхлорных окислителей для ТРТ на замену перхлорату аммония, но все предлагаемые вещества пока слишком дороги, неэффективны или опасны.

Первая стадия производства СТТ включает подготовку окислителя (измельчение и сушка) и приготовление горюче-связующего (смешение олигомеров, пластификаторов и органической части окислительно-восстановительной инициирующей системы (ОВИС)). Затем смешивают окислитель с минеральными компонентами ОВИС, а горюче-связующее с остальными твердыми компонентами (БВВ, порошки металлов, катализаторы горения, стабилизаторы химической стойкости и пр.). Смешение вязкого горюче-связующего и окислителя производят в ротационных или роторных смесителях при небольшой скорости вращения. Готовой массой заполняют корпус РДТТ или форму (предварительно покрытую антиадгезивом). Шашку выдерживают некоторое время при повышенной температуре (45-70*С) в термокамере. Чем крупнее заряд и чем выше энергетика топлива, тем ниже температура нагрева и длительнее выдержка. После сшивки полимерного горюче-связующего трехмерной сеткой поперечных связей, шашку остужают и вынимают из формы (если отливали в форму) или направляют для окончательной сборки РДТТ (если отливали в корпус двигателя). СТТ являются более дорогими и сложными в производстве ТРТ, но, они обеспечивают высокие энергетические характеристики и позволяют производить шашки практически любого размера (до нескольких сотен тонн и более) .

Модифицированные двухосновные топлива

В качестве компонентов в смесевые топлива могут добавляться значительные количества двухосновных топлив. Такие составы называют модифицированными двухосновными топливами.

Карамельное топливо

В кустарном ракетомоделизме получило широкое распространение самодельное смесевое топливо на основе нитрата калия и органических связующих, доступных в быту (сорбит , сахар и т. п.). Достаточно простое в изготовлении и обращении, оно обладает невысоким удельным импульсом, отличается нестабильными свойствами и опасно в производстве. Аналогичные кустарные составы иногда используют нерегулярные вооруженные формирования для неуправляемых реактивных снарядов малой дальности (например, НУР Кассам).

Необычные топлива

В 2009 году в США прошли наземные огневые испытания твердотопливного двигателя на основе водяного льда и мелкодисперсного (около 80 нанометров) алюминиевого порошка. На сегодняшний день НАСА рассматривает эту смесь как весьма перспективную (особенно в силу дешевизны) альтернативу твёрдому топливу.

Процесс горения

  1. Стадия инертного прогрева;
  2. Стадия разложения компонентов топлива;
  3. Стадия химического взаимодействия газообразных окисл. горючих элементов. При этом взаимодействии выделяется большое количества тепла.

Все эти процессы протекают одновременно и практически не разделены на пространственные зоны у поверхности горящей шашки. Высокое содержание в продуктах сгорания ТРТ твердых частиц снижает влияние давления на скорость горения шашки. Для уменьшения влияния случайных перепадов давления и начальной температуры на скорость горения шашки и колебания тяги, используют катализаторы горения ТРТ. Чаще всего в качестве катализаторов горения выступают минеральные или органические соединения переходных металлов. Например: оксид железа, оксид хрома, бихромат свинца, оксид свинца, карбонат свинца,

Смесевые ракетные твердые топлива

Одной из наиболее молодых, быстроразвивающихся и мощных составляющих энергетических конденсированных систем (ЭКС) является смесевое ракетное твердое топливо (СРТТ).

СРТТ - многокомпонентная гетерогенная грубодисперсная высоконаполненная взрывчатая система, состоящая из окислителя, связующего-горючего и специальных добавок (энергетических, технологических и эксплуатационных) и получаемая путем механического смеше-ния компонентов с последующим превращением в моноблок, способный к закономерному горению.

Таблица 3 − Рецептуры и свойства составов цветных огней на баллиститной основе

Наименование компонента и свойств состава Содержание компонентов, %, и значения характеристик для состава огня
красного №1 зеленого желтого № 1 белого лилового голубого желтого № 2 желтого искристого красного № 2
Баллиститная основа 97,5
Металлическое горючее - - -
Цветопламенная добавка 2,5
Усилитель цвета пламени - - - - - -
Искрообразователь - - - - - - -
I, кд
U, мм/с 1,5 1,5 1,4 1,6 1,8 1,5 0,8 1,2 0,8
Р, % - - -

Родоначальником СРТТ был дымный порох (ДП). Китайцы первыми начали применять его в качестве твердого топлива для ракет. Ракета в качестве стабилизатора имела шест длиной 2,5 м. В качестве оболочки-корпуса применили бамбуковые трубки. Индусы в качестве корпуса-оболочки уже использовали железный корпус. В 1799 г. индусы в боевых действиях применяли ракеты против англичан при обороне г. Серингапатама. Для массированного использования ракет там был создан корпус ракетных стрелков численностью до 5000 человек. Масса ракет составляла от 3 до 6 кт .

В Европе первые ракеты также появились с изобретением пороха. Англичане освоили технологию изготовления ракет на дымном порохе в 1804 г. Дальность полета ракет составляла 2,5 км. Ракеты имели железный корпус, а с целью увеличения площади горения заряд имел канал. На вооружение они были приняты в 1806 г. (использовались при осаде г. Булони и в 1807 г. при обстреле г. Копенгагена). Масса ракеты составляла от 3 до 17 кг. Вслед за Англией ракеты на вооружение принимают в Австрии, Франции, Пруссии.

Русская ракетная техника шла своим самостоятельным путем, и есть сведения, что Россия намного опередила Западную Европу. Уже в начале XVII в. были хорошо известны способы изготовления боевых ракет. В 1680 г. в Москве основано первое «ракетное заведение», состоящее из нескольких лабораторий, занимающихся приготовлением специальных ракетных порохов и отдельных частей ракет .

В 1807 г. была разработана сорокачетырехмиллиметровая сигнальная ракета на ДП, которая находилась на вооружении более 100 лет. Широкое применение пороховые ракеты, разработанные русскими учеными А.Д. Засядько и К.И. Константиновым, нашли во время русско-турецкой войны в 1828-1829 гг., в боевых операциях на Кавказе в 1850 г. и при обороне Севастополя от иностранных захватчиков в 1854–1855 гг. .

Ракеты на ДП утратили свое значение по двум причинам:

Вследствие неудовлетворительного значения энергетических характеристик пороха;

Вследствие малой точности ракет.

Появление нарезной артиллерии, позволившей значительно повысить точность попадания, окончательно свело на нет интерес к ДП.

В период второй мировой войны в связи с тем, что баллиститные пороха были дефицитными, а некоторые их свойства не позволяли использовать эти пороха в качестве источника энергии ракет, усилия научных работников многих стран были направлены на разработку механически прочных СРТТ.

В 1942 г. в Артиллерийской академии им. Ф.Э. Дзержинского были разработаны литьевые составы СРТТ на основе аммонийной селитры и органических горюче-связующих веществ типа поливинилацетата, а в 1946 г. А.А. Шмидт впервые обосновал возможность получения твердых топлив на базе полимеризующихся веществ. Он предсказал реальные пути данного направления и его перспективность. К наиболее ранним работам в этом направлении относятся исследования
Г.В. Калабухова . В 1948 г. им были предложены СРТТ на основе перхлоратов аммония и калия и горючей высокополимерной связки, состоящей из коллоксилина, полистирола и каучука. Однако по энергетическим характеристикам и прочности разработанные составы уступали баллиститным порохам. Заряды изготавливались глухим и проходным прессованием.

Первые американские СРТТ были получены в лаборатории Калифорнийского технологического института.

В их состав входили:

перхлорат калия или нитрат аммония – 75 %;

битум − 18 %;

нефтяное масло − 7 %.

В дальнейшем с целью повышения энергетики в качестве окислителя стали использовать перхлорат аммония (ПХА) и металлический алюминий, а для улучшения физико-механических характеристик топлива были применены каучукоподобные горюче-связующие вещества. Так, на основе тиокола (полисульфидный каучук) и ПХА были разработаны СРТТ для оперативно-тактической ракеты «Серджент» массой около 4 тонн и дальностью полета до 150 км. Затем на основе полиуретана и ПХА было создано топливо для оперативной ракеты «Першинг» с дальностью полета до 700 км, а также стратегической ракеты «Полярис» массой около 13 тонн и дальностью полета до 4000 км. В дальнейшем на основе ПХА и сополимера полибутадиена с акриловой кислотой было разработано топливо, использованное для изготовления зарядов к межконтинентальной ракете «Минитмен» с дальностью полета до 10000 км.

Все эти ракеты были разработаны и приняты на вооружение в период с 1953-1963 гг. В конце 1970 г. армия, Военно-Морской Флот и авиация США имели 600 ракет «Полярис» на подводных лодках и 1000 ракет «Минитмен», установленных в шахтах на боевых позициях.

В СССР разработкой и использованием СРТТ в широком плане стали заниматься с 1958 г. В 1959 г. в Артиллерийской академии
им. Ф.Э. Дзержинского было получено и исследовано в лабораторном масштабе полиуретановое топливо. В этом же году разработано в промышленном масштабе СРТТ на основе тиокола и ПХА. Несколько позже созданы СРТТ на основе простых и сложных полиэфиров, акрилонитрильных каучуков, бутилкаучука и карбоксильных каучуков .



Начиная с 1961 г. усилия исследователей были направлены на повышение удельного импульса СРТТ, увеличение уровня физико-меха-нических характеристик и стабилизацию процесса горения.

С.П. Королев создал первую твердотопливную ракету РТ-1 на баллиститном порохе с дальностью полета 2500 км при стартовой массе 34 тонны, используя вкладные заряды диаметром 800 мм. Только перейдя на СРТТ, он смог создать вторую твердотопливную ракету
РТ-2 (8К-98), имеющую дальность полета уже 9500 км при стартовой массе 51 тонна . Первый пуск ее состоялся 4 ноября 1966 г., а на вооружение она была принята в 1968 г.

Заряд твердого ракетного топлива − источник химической энергии и один из основных конструктивных элементов твердотопливной энергетической установки (ракетный двигатель, газогенератор, аккумулятор давления, бортовой источник мощности) определенной формы и размера, размещенный в камере сгорания. Твердотопливные заряды подразделяются на вкладные и скрепленные с корпусом. Вкладные заряды после изготовления помещаются в корпус двигателя и закрепляются различными способами в зависимости от особенностей конструкции (рисунок 43). Вкладной заряд может быть выполнен в форме моноблока или состоять из нескольких шашек. Поверхность вкладного заряда, не предназначенная для горения, может быть флегматизирована путем нанесения бронирующего покрытия. Форма канала многошашечного заряда, как правило, цилиндрическая. Моноблочный заряд может быть бесканальным или иметь центральный канал в форме цилиндра, многолучевой «звезды» и др. .

Прочно скрепленный с корпусом заряд изготавливается заливкой топливной массы непосредственно в камеру сгорания. Скрепление заряда с корпусом осуществляется с помощью специальных защитно-крепящих (клеевых) слоев (рисунок 44) .

ТРТ − твердое ракетное топливо; ТЗП − теплозащитное покрытие;

ЗКС − защитно-крепящий слой; СОК − сопловой блок

Рисунок 44 − Схема крепления с помощью защитно-крепящих слоев

Размеры и конструктивная форма заряда выбираются из условия обеспечения требуемого значения секундного расхода топлива, временных и тяговых характеристик, нагрузок, температурных режимов эксплуатации и применения. Требуемая зависимость текущего значения поверхности горения от величины сгоревшего свода обеспечивается формой канала (цилиндрический, звездообразный, щелевой, цилиндро-конический и др.), а также введением специальных компенсаторов горения в виде проточек частичного или полного открытия торцов и др.

Совершенство заряда в значительной степени определяется коэффициентом объемного заполнения камеры сгорания, минимизацией отношения текущего значения поверхности горения к среднеинтегральной величине, технологичностью изготовления, стойкостью к воздействию внешних факторов. Маcсовые параметры зарядов изменяются в широких пределах: от долей грамма до нескольких сотен тонн.

Применение СРТТ не ограничивается вооруженными силами. Они параллельно широко стали применяться для освоения космоса и в народном хозяйстве .

Использование СРТТ в мирных целях. Ракетные двигатели на твердом топливе (РДТТ) находят широкое применение в мирных целях в народном хозяйстве как вспомогательные двигатели для решения самых разнообразных задач в ракетно-космической технике .

РДТТ наиболее часто применяются в системе аварийного спасения космонавтов и летчиков, для торможения и ускорения космического аппарата, отделения ступеней ракеты-носителя, сброса полезного груза, стабилизации и коррекции траектории космического аппарата (КА), коррекции орбиты КА, посадки КА на планеты, старта ракет-носителей и возвращаемых КА в системах «Шаттл», в качестве двигателей метеорологических ракет, служащих для подъема аппаратуры в верхние слои атмосферы, противоградовых и противолавинных.

Преимуществами РДТТ, обеспечивающими их широкое применение в ракетно-космических аппаратах, являются высокая воспроизводимость параметров, в том числе точность выполнения требований по полному импульсу тяги, высокий коэффициент массового совершенства, длительные гарантийные сроки применения и относительная безопасность при хранении и эксплуатации.

Для отделения ступеней ракеты применяются малогабаритные РДТТ самых разнообразных конструкций, тип которых определяется выполняемой задачей. Заряд из СРТТ, вариант снаряжения вкладной или жесткоскрепленный, представлен на рисунке 45.

1 − воспламенитель; 2 − обечайка камеры; 3 − заряд СРТТ;

4 − сопловой блок

Рисунок 45 − Малогабаритный РДТТ

Тормозные двигатели применяются для торможения при спуске самых разнообразных космических аппаратов. Для этих целей в основном применяются РДТТ сферического типа, например, сферические РДТТ серии ТЕ-М (США) фирмы «Тиокол Паудер» использовались для торможения при спуске космического корабля «Джемени», при посадке космического аппарата «Сервейер» на луну и др. Конструкция тормозного двигателя типа ТК-М-385 представлена на рисунке 46.

1 − защитный кожух; 2 − блок центровочного зеркала; 3− заряд
твердого топлива; 4 − теплоизоляционное покрытие; 5 − корпус;
6 − вкладыш; 7 − расширяющаяся часть сопла; 8 − резиновая заглушка;

9 − воспламенительное устройство

Рисунок 46 – Тормозной РДТТ типа ТК-М-385

Заряд твердого топлива выполнен в виде восьмилучевой звезды из полисульфидного топлива, состоящего из ПХА и связки с добавлением 2 % алюминия.

Коррекция орбиты космического аппарата необходима для обеспечения его межорбитальных переходов и выполнения различных маневров на орбите. К двигателям такого типа относятся апогейные и пирогейные РДТТ, обеспечивающие переход КА с одной орбиты на другую.

Апогейный ракетный твердотопливный двигатель типа FW-5, применяемый в США, представлен на рисунке 47 .


Рисунок 47 − РДТТ типа FW-5

Корпус изготовлен из титанового сплава. В двигателе используется СРТТ на основе полиуретанового связующего, ПХА и алюминия.
В качестве теплозащитного материала в корпусе используется состав на основе фенольной смолы.

На рисунке 48 изображен РДТТ аналогичного назначения MAGE-1. Его корпус изготовлен из композиционного материала «Кевлар-49», заряд − из алюминизированного топлива.

1 − теплоизоляция; 2 − заряд твердого топлива; 3 − сопловой блок;
4 − корпус; 5 − воспламенительное устройство

Рисунок 48 − РДТТ типа MAGE-1

На рисунке 49 изображен перспективный апогейный РДТТ (США) серии STAR-48 фирмы «Тиокол Кемик», позволяющий увеличивать удельный импульс тяги в пустоте на 59,0–88,5 кн· с/кг при коэффициенте объемного заполнения до 0,935.

1 − корпус; 2 − теплозащитное покрытие; 3 − тороидальный
воспламенитель; 4 − сопловой блок; 5 − графитовый вкладыш

Рисунок 49 − Апогейный РДТТ серии STAR-48

Эти двигатели обладают следующими преимуществами:

Заряд из СРТТ на основе полибутадиенового каучука имеет цилиндрическую форму с радиальными щелевыми пропилами и заполняет всю переднюю часть корпуса;

Корпус выполнен из титанового сплава с теплозащитой из композиционного материала углерод-углерод.

Особое значение при конструировании малогабаритных РДТТ уделяется выбору топлива. Наиболее полно предъявляемым требованиям удовлетворяют СРТТ, в которых в качестве связующего-горю-чего применяются полиуретаны или углеводородные каучуки, а в качестве высокотеплопроводных добавок − алюминий. Термодинамические характеристики СРТТ могут быть повышены применением как более мощных окислителей, так и гидридов металлов, например, алюминия .

Некоторые характеристики СРТТ, применяемые в малогабаритных двигателях РДТТ в США, приведены в таблице 4.

Серьезным недостатком СРТТ на основе ПХА является их токсичность , т.к. при его сгорании выделяется большое количество токсичного хлора и хлористого водорода. Например, при старте корабля «Спейс Шаттл» при работе твердотопливных ускорителей в атмосферу выбрасывается около 2 тонн хлора и 210 тонн хлористого водорода, которые оказывают вредное воздействие на окружающую среду. Поэтому, чтобы облегчить использование СРТТ в мирных целях, ведутся большие работы как у нас, так и за рубежом по замене ПХА на экологически чистые окислители: аммонийная соль динитроазовой кислоты (АДНА), аммиачная селитра .

Таблица 4 − Основные характеристики топлив для РДТТ

В США разработано дешевое и экологически чистое СРТТ для двигателей крупных космических ускорителей, в котором в качестве основных компонентов используются нитрат аммония, гексоген, октоген и связующее на основе полиглицедилазида, пластифицированного нитроэфирами .

В ФГУП «Союз» создано экологически чистое СРТТ «Центр», неблагоприятные свойства которого, в частности, фазовая нестабильность аммиачной селитры, устранены за счет ввода в кристаллы модифицирующей добавки. В нем используется активное связующее с температурой кристаллизации минус 50 °С на основе эвтектической смеси с нитроэфирами. Использование аммиачной селитры и бутадиен-нит-рильного каучука снижает стоимость топлива.

Однако применение аммиачной селитры вместо ПХА заметно снижает энергетику СРТТ, ограничивает его использование в изделиях, где значение единичного импульса играет решающую роль. Кроме того, применение нитрата аммония ограничивается его повышенной гигроскопичностью.

Разработанные экологически чистые топлива находят применение в качестве зарядов для метеорологических ракет, в газодинамических буровых аппаратах, пороховых аккумуляторах давления.

В настоящее время все большее число ракет-носителей, применяемых для запуска различного типа спутников, используют в качестве ускорителей РДТТ. Так, например, в ракете «Титан-3С» (США) для старта кроме основных жидкостных ракетных двигателей (ЖРД) используются в качестве ускорителей два мощных РДТТ диаметром 3 м и длиной 25,8 м, развивающих тягу в пустоте до 540·10 4 н при времени работы 110 с. Применение их позволило увеличить массу нагрузки, выводимой на орбиту, до 11,4 тонн. Стартовая масса ракеты составляет 700 тонн.

Мощные ускорители, работающие на СРТТ с массой заряда от 100 до 200 тонн, стали применяться для запуска французских ракет «Ариан-2» и «Ариан-4», служащих для выведения на орбиту искусственных спутников Земли.

Фирмами IIS (США) и SEP (Франция) разработан усовершенствованный вариант такого типа двигателя, обеспечивающего при среднем давлении в камере 33,9·10 5 Па удельный импульс тяги 2970 кн· с/кг.

Заряд прочно скреплен с корпусом двигателя и имеет канал, не доходящий до переднего днища корпуса. Такая конструкция позволяет повысить коэффициент объемного заполнения до 0,92 и обеспечить достаточно небольшую площадь поверхности горения. Заряд изготавливается из высокоимпульсного твердого топлива на основе ПХА и полибутадиенового каучука (10 %), алюминия (20 %) и октогена (12 %).

Эффективным направлением конверсии многих заводов по производству СРТТ является изготовление на их основе стартовых ускорителей для мощных ракет-носителей и космических кораблей, выводящих на орбиту различные КА. Ускорители имеют очень большую массу (от 150 до 400 тонн), их изготовление обеспечивает загрузку заводов по производству СРТТ в мирное время. Обычно два таких ускорителя закрепляются по бокам основного корпуса ракеты и обеспечивают ее подъем, а после выработки топлива отделяются от ракеты с помощью специальных РДТТ сброса и падают на землю.

Типовой стартовый РДТТ имеет пять-шесть взаимозаменяемых секций, собираемых одна над другой и образующих общий корпус двигателя .

Схема стартового двигателя к ракете-носителю «Титан-3С», с помощью которого выводятся на орбиту различные спутники США, приведена на рисунке 50.

Она состоит из пяти секций диаметром 3,0 м и длиной 3,0 м. Масса каждой секции составляет 33,0 тонны. Заряд прочно скреплен с корпусом каждой секции и изготовляется из СРТТ, содержащего ПХА, алюминий и связующее на основе полибутадиена, метакриловой кислоты и акрилонитрила. Такое СРТТ при давлении в камере 6,0-6,2 МПа обеспечивает удельный импульс тяги 2480. Корпус двигателя сварной (из мостовой стали). На внутреннюю поверхность наносится теплозащитное покрытие из синтетического каучука с кремниевым наполнителем.

РДТТ к системе «Шаттл». Космическая система «Шаттл» (массой более 2000 тонн), предназначенная для вывода на орбиту пилотируемых и спускаемых кораблей «Челенджер», «Атлантик», «Дискавери», «Колумбия» и других, представляет собой связку, в которую вхо-дит орбитальный корабль с экипажем, два твердотопливных ускорителя для разгона корабля на начальном участке траектории и топливный бак одноразового использования. Последний является основным элементом системы, к которому крепятся спускаемый корабль и ускорители, возвращаемые на Землю и используемые повторно.

Основной особенностью этой системы в отличие от отечественной системы «Энергия-Буран» является то, что на ней установлены два ускорителя, работающие на твердом топливе. В системе «Энергия-Буран» стартовые ускорители работают на жидком топливе.

Твердотопливный ускоритель представляет собой РДТТ секционного типа, имеет диаметр 3,7 м, длину 45,5 м и массу в снаряженном состоянии около 590 тонн, а после выгорания топлива − 78 тонн. Масса твердого топлива составляет примерно 500 тонн. Время его работы больше 2 мин, суммарная тяга свыше 26 Мн.

В качестве твердого топлива применяют СРТТ, в состав которого входят ПХА, порошкообразный алюминий, полибутадиеновое связу-ющее, оксид железа и другие добавки. Форма заряда, жестко скрепленного с корпусом, − цилиндрическая, с внутренним каналом обеспечивает соблюдение необходимого закона нарастания тяги, который создает наиболее выгодный режим перегрузок (не более 3) для космонав-тов. После выгорания топлива корпуса ускорителей отделяются от корабля на высоте 70-90 км, а затем при достижении плотных слоев атмосферы срабатывает парашютная система, обеспечивающая их приводнение. Поднятые из воды корпуса ускорителей восстанавливаются и вновь заполняются топливом.

Твердотопливные ускорители используют и во Франции на мощной ракете-носителе для запуска космических объектов, в том числе пилотируемых кораблей многоразового использования «Гермес», «Ариан-5».

Применение твердотопливных ускорителей, имеющих достаточно значительную массу топлива, как в системе «Шаттл», так и в ракетных носителях типа «Титан-3С» создало хорошие предпосылки для конверсии заводов, производящих твердое ракетное топливо в США, обеспечивая их загрузку в мирное время без изменения технологического процесса и оборудования.

Двигатели системы аварийного спасения космонавтов. Все ракеты-носители, служащие для вывода на орбиту космических объектов с космонавтами на борту, снабжаются системами аварийного спасения людей в момент запуска и активного полета.

Основой этой системы является РДТТ специальной конструкции, использующей твердые ракетные топлива баллиститного и смесевого типа. Например, в трехступенчатой ракете-носителе «Союз» третья ступень представляет собой блок длиной 8 м и диаметром 2,6 м, к которой через переходник пристыкован космический корабль, закрытый сверху обтекателем диаметром 3,0 м. На вершине обтекателя находится двигательная установка аварийного спасения корабля, имеющая форму большого гриба (рисунок 51) .


1 − двигательная установка; 2 − ракета «Союз»

Рисунок 51 − Двигательная установка аварийного спасения
на корабле «Союз»

Назначение установки в случае отказа ракеты, еще не израсходовавшей огромной массы топлива, − мгновенно увести космонавтов от очага неизбежного пожара и взрыва на расстояние, с которого возможен спуск на парашюте в безопасное место.

Система аварийного спасения (САС) корабля «Союз» комплектуется следующим образом: в носовой части ракеты монтируется аварийная двигательная установка, состоящая из твердотопливных ракетных двигателей трех типов.

Непосредственно на головном обтекателе устанавливается основной двигатель, включающийся в случае аварии и быстро отводящий верхнюю часть головного обтекателя с отсеком и спасаемым аппаратом корабля от ракеты.

Двенадцать сопел этого мощного двигателя расположены по кругу в его верхней части и развернуты под углом 30 градусов от продольной оси. Над ними находится небольшой обтекатель в виде полусферы, под которым спрятаны четыре двигателя управления. Они включаются вслед за основным, обеспечивая разворот и увод спасаемой части в сторону от опасной зоны. Еще выше находится двигатель разделения, который, включаясь последним, обеспечивает отделение головного обтекателя и его увод от спускаемого аппарата. После этого вводится основной парашют, и спускаемый аппарат совершает спуск и мягкую посадку так же, как при возвращении из штатного полета. Торможение при посадке осуществляется тормозными РДТТ, работающими на твер-дом топливе .

Термостойкие топлива для газогенераторов СРТТ. Для интенсификации добычи нефти стал широко применяться метод торпедирования скважин специальными зарядами. Пороховые газы создают каналы и трещины в горной породе, способствуя притоку нефти. Но используемые для этих целей пороха баллиститного типа имеют определенные ограничения: например, могут использоваться только в тех скважинах, где температура не превышает 110 °С (т.е. до глубины
3 км). Разработанные составы на основе ПХА и неактивных углеводородных связующих устраняют этот недостаток. Они сохраняют работоспособность после их выдержки при температуре 150 °С в течение 6 часов и могут 10 лет храниться при температуре 50 °С. Критическая температура при диаметре шашки 150–200 мм составляет 170–200 °С. Выделяющаяся при горении этого топлива соляная кислота, попадая в пласт и реагируя с породой, может способствовать интенсивному развитию трещин. Изготовление зарядов из этих топлив может производиться на существующем оборудовании по технологии заводов по производству СРТТ .

СРТТ − источник аэрозолей. Одним из перспективных методовтушения пожаров в помещениях для хранения спирта, керосина, ацетона, продуктов в магазинах, винных погребах, в отсеках кораблей является аэрозольный, т.е. мгновенное заполнение помещения аэрозольной средой, почти не содержащей кислорода, в результате чего и прекращается горение.

Этот метод, запатентованный Кюном еще в конце XIX столетия, в дальнейшем был значительно усовершенствован и получил широкое распространение. «Банки Кюна» заполнялись пиротехническим составом, который имел ряд значительных недостатков: например, слеживаемость, недостаточный уровень физико-механических характеристик и др. Взамен его были разработаны новые типы порохов − источников аэрозолей, специально предназначенных для системы пожаротушения и предотвращения взрыва газовоздушных смесей. Этот новый класс порохов получил название ПАС (пороховые, аэрозольные, смесевые). Особенностью этих составов является высокая экономическая эффективность; расход огнетушащего состава 20-90 г/м 3 вместо 200-700 г/см 3 , применяемых ранее, экологическая чистота, высокая надежность и постоянная готовность к применению, наличие совершенной технологии по методу свободного литья (вязкость массы находится в пределах
(2-8)·10 4 , живучесть более 24 ч).

Разработано несколько составов (например, ПАС-8, ПАС-11), в которые входят в качестве основного компонента нитраты К, Na и углекислые К и Na, NaCl, KCl, K 2 Cr 2 O 7 , перхлораты К, Na, NH 4 , а в качестве связующего − нитроцеллюлоза, каучуки, полиэфирные, эпоксидные или резольные смолы. Температура горения их колеблется в пределах 910–1495 К, массовая доля твердой фазы 13–39 % .

Твердое топливо как источник газа помимо РДТТ может применяться и в других областях техники: для вращения турбины, приведения в действие пневмосистем, заполнения эластичных оболочек и т.д. Но их широкому применению препятствует высокая температура сгорания. Наиболее низкокалорийные твердые топлива дают газ с температурой 1400–1500 К, тогда как традиционные для техники материалы (металл, пластик, резина) выдерживают температуру 300–400 К. Следовательно, нужно снижать температуру продуктов горения топлива. По мнению В.А. Шандакова и В.Ф. Комарова , температуру газов можно снизить, если создать заряд в виде материала со сквозной пористостью. Зона горения находится со стороны глухого торца камеры сгорания (рисунок 52) .

1 − глухой торец камеры сгорания; 2 − заряд ТТ; 3 − фильтр; 4 − сопло

Рисунок 52 − Схема сжигания пористого заряда ТТ в камере сгорания

Развивающееся в ней давление через поры в заряде выталкивает газ и продвигает жидкие продукты сгорания через тело пористой топливной шашки, подогревая ее до температуры газификации, т.е. подогретым телом служат продукты сгорания ТТ. При полном теплообмене газ перед фронтом тепловой волны будет иметь температуру, равную начальной температуре заряда. На практике она составляет 300–330 К.

Достоинства таких твердых топлив еще и в том, что в качестве газообразных продуктов сгорания можно получить индивидуальные газы, например, N 2 , O 2 , H 2 с чистотой 98,0–99,0 %. Область применения таких устройств весьма широка: средства спасения человека на земле и воде, аварийные пневмосистемы, средства пламеподавления и пожаротушения, грузоподъемные устройства и устройства вытеснения и далее медицинская помощь.

В технике можно использовать и высокую температуру, например, в нефтегазодобывающей промышленности.

Нефтяная скважина со временем угасает из-за закупорки пор нефтяного пласта выносимыми нефтью твердыми частицами, углеродами парафинового ряда и смолистыми веществами. Существовал метод воздействия на нефтеносный пласт давлением воды, но это дорого. Если же в заполненной жидкостью скважине в зоне нефтяного пласта создать при сжижении ТТ кратковременно давление выше давления горных пород, то удается не только прочистить закупоренные поры давлением и температурой задавливаемых в пласт газов, но и создать новые поры. Надо лишь очень быстро сжечь ТТ, воспользовавшись инерционностью столба жидкости над ним.

Для увеличения дебита скважины применяют гидрореагирующие составы при термохимической обработке.

Твердые топлива можно использовать в качестве химического реактора для синтеза различных веществ. Например, если в качестве окислителя взять смесь нитрата алюминия Al(NO 3) 3 с нитратами кобальта, хрома, железа, получим смешанный оксид Al x O y синего, зеленого и красного цвета − светостойкий пигмент для красок.

Если взять смешанные нитраты циркония и иттрия, получим основу жаростойкой керамики − стабилизированный диоксид циркония. Используя смешанные нитраты бария, меди и иттрия, получают сверхпроводящую керамику .

Гидрореагирующие составы применяют для наддува понтонов при подъеме затонувших объектов. Основными характеристиками гидрореагирующих составов являются количество тепла, выделяющегося при сгорании зарядов при взаимодействии с водой, количество воды, необходимое для сгорания одного состава и газопроизводительность.

Пороховые аккумуляторы давления. Пороховые аккумуляторы давления (ПАД)твердотопливные энергетические устройства, служащие для преобразования химической энергии твердого топлива в энергию сжатого газа.

Типовая конструкция ПАД включает корпус, состоящий из высокопрочной оболочки, днища, соплового выпускного устройства и опор-ных элементов для заряда, сам твердотопливный заряд, воспламенитель и средства инициирования запуска.

ПАД по сравнению с системами сжатия холодного газа имеет ряд существенных преимуществ:

Компактность;

Быстродействие;

Меньшие массово-габаритные характеристики;

Хорошие эксплуатационные свойства при различных атмос-ферных воздействиях;

Высокая надежность работы.

Они нашли широкое применение в различных пневмо-вытесни-тельных системах гражданского и специального назначения. Например, выброс ракетных сигналов из пусковых шахт, наддув различных емкостей, быстрое открытие и закрытие крышек, люков, затворов, наддув нефтяных скважин, экстренное торможение .

К твердым топливам, являющимися источниками энергии на борту ракеты и рабочего тела двигателей, предъявляют ряд требований, схожих с требованиями к жидким топливам. Ясно, что нужны рецептуры с наибольшими значениями удельного импульса и плотности.

Отличия возникают в эксплуатационных требованиях, которые содержат значения механических характеристик заряда ТТ, позволяющие выдерживать возникающие напряжения и деформации без разрушения, по уровню взрывобезопасности заряда ТТ (случайное падение РДТТ при проведение монтажных работ, поражение РДТТ стрелковым оружием противником ракет, находящихся на боевом дежурстве). Необходимо обеспечить физическую стабильность топлива - минимальное перераспределение компонентов из-за газовой диффузии продуктов взаимодействия химически активных элементов при длительном хранении (а гарантийный срок эксплуатации РДТТ УБР не менее 15 лет!), постоянство масс ТТ и релаксацию напряжений без растрескивания заряда, а также химическую стабильность - способность заряда сохранять свой состав без разложения из-за неизбежно протекающих окислительных реакций при длительном хранении.

Существует требование по уровню промышленной базы для серийного изготовления крупногабаритных зарядов РДТТ проектируемой УБР.

Все требования выполнить одной универсальной рецептурой невозможно и в практике твердотопливного двигателестроения разработана гамма составов топлив. По своей физической природе ТТ разделяют на два класса:

Двухосновные, представляющие собой твердые растворы веществ, молекулы которых содержат горючие и окислительные элементы;

Смесевые, представляющие собой механическую смесь горючих и окислительных веществ.

Из двухосновных наиболее распространены баллиститные ТТ - коллоидные растворы нитроцеллюлозы (нитроклетчатки) с труднолетучими растворителями (нитроглицерин, динитротолуол, динитроэтиленгликоль). Можно условно принять, что нитроцеллюлоза - горючее, а окислитель - нитроглицерин. Заряды из баллиститных ТТ получают прессованием в матрицы различных форм, наибольший диаметр таких зарядов не превышает 800 мм. Их изготавливают отдельно от корпуса двигателя, а затем либо вклеивают, либо другим способом устанавливают в корпус и поэтому такие заряды называют вкладными, они существуют вне двигателя на складе. Но реализована и литьевая технология изготовления зарядов из баллиститных ТТ.

Существуют модифицированные двухосновные топлива - промежуточная форма между двухосновными и смесевыми топливами. В них введены различные активные добавки - кристаллический окислитель (например, перхлорат аммония) и бризантные вещества (гексоген, октоген). Заряды из этих топлив изготавливаются уже по литьевой технологии в корпус двигателя, эффективность этих топлив выше.

Смесевые топлива содержат три компонента: кристаллический окислитель, полимерное горючее - связующее и металлическую добавку. Окислителем служат нитраты или перхлораты аммония, калия, а горючим - полиэфирные и эпоксидные смолы и каучуки (полиуретановые, полибутадиеновые). Из металлических добавок наибольшее распространение получил алюминий, повышающий температуру продуктов сгорания, плотность топлива и стабилизирующий процесс горения (алюминий также добавляют в модифицированные двухосновные топлива). Заряды из смесевых топлив получают литьевой технологией прямо в корпусе РДТТ, а геометрия внутренней поверхности формируется технологической иглой. Технологический процесс состоит из подготовки смеси порошкообразных компонентов, подготовки связующего (вакуумирование, смешение жидких элементов, приготовление смеси связующего с алюминием), приготовления топливной массы и формования заряда, полимеризации заряда.

Метод литья под давлением использует смесители непрерывного действия, топливная масса из них транспортируется шнеками в корпус РДТТ. Давление топливной массы в начале заполнения составляет 0,5...1,0 МПа и возрастает до 2…4 МПа в конце заполнения. При свободном литье подготовка жидких компонентов и смешение топливной массы производят в отдельных смесителях, затем массу сливают в предварительно вакуумированный корпус. Полимеризация происходит под давлением 3...8МПа при температуре 313...353 К в течение 15...25 суток.

В состав топлив в небольших количествах входят добавки:

Регулирующие скорость горения (например, железо);

Повышающие стабильность и устойчивость горения;

Обеспечивающие необходимые значения механических свойств.

Рассмотрим показатели баллиститных топлив.

Типичная рецептура приведена в таблице 3.8.


Таблица 3.8

В состав топлива входит флегматизатор - динитротолуол для уменьшения скорости горения. Рецептура содержит ещё стабилизатор химической стойкости - централит, являющийся производным мочевины. Для улучшения условий изготовления заряда введена технологическая добавка - воск, что повышает пластичность топливной массы и уменьшает взрывоопасность заряда при эксплуатации двигателя.

Данная рецептура имеет плотность 1607 кг/м 3 , стандартный удельный импульс 2239,6 м/с при температуре продуктов сгорания 2058 К. Лучшие рецептуры баллиститных топлив имеют значения удельного импульса в стандартных условиях не более 2400 м/с, температуру продуктов сгорания до 3000 К и плотность до 1630 кг/м 3 .

Баллистическая эффективность нитроцеллюлозных топлив невысока и их используют для двигателей вспомогательного назначения: тормозные при разделении ступеней ракет, двигатели мягкой посадки КА, источники энергии на борту ракеты для действия приводов поворота сопел маршевых ступеней.


Конец работы -

Эта тема принадлежит разделу:

Курс лекций по направлениям двигательные установки летательных аппаратов дула

Гоу впо мгту им н э баумана.. в е медведев а г минашин с д панин б б петрикевич..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Краткий исторический экскурс
Человечество впервые увидело реактивное движение на примере каракатицы – живого существа, передвигающего отбрасыванием воды и сокращением мышц внутри организма. Порох, состоящий из смеси с

Тяга ракетного двигателя
Энтальпию продуктов сгорания в камере сгорания в кинетическую энергию струи можно преобразовать различными способами: подводом теплоты и массы по тракту постоянной геометрии, ускорением в сужающихс

Удельные параметры ракетного двигателя
Абсолютная величина тяги РД никак не характеризует степень совершенства РД. Для ЖРД качественным показателем является удельный импульс тяги (удельный импульс) - величина импульса тяги двигателя с е

Расходный комплекс камеры
Задается соотношением. Размерность: в СИ β [м/с], в ТСЕ β[сек]. Характеризует удельный импульс, создаваемый только камерой сгорания (корпусом двигателя) без со

Коэффициент тяги
Задается соотношением. Коэффициент тяги показывает увеличение тяги двигателя вследствие наличия сопла. Иногда КТ называют безразмерной тягой. Теоретическое значение

Геометрическая степень расширения сопла
Эта величина не только определяет размеры сопла, но и характеризует основные параметры работы сопла: (или скорость). Связь между основными параметрами определяется известными из газовой динамики с

Оценка эффективности ракетного двигателя
Очевидно, что эффективность РД можно оценивать только с позиций ЛА, т.е. критерии качества РД должны вытекать из целей ЛА как объекта высшего уровня иерархии. Из курса ОУЛА известно, что критерием

Топлива ракетных двигателей
Под топливом РД будем понимать вещество или совокупность веществ, способных к химическим реакциям с выделением энергии и к образованию высокотемпературных продуктов для создания тяги. Таких веществ

Жидкие ракетные топлива
По назначению жидкие ракетные топлива (ЖРТ) подразделяют на основные, пусковые и вспомогательные. Основные предназначены для создания тяги маршевых двигателей, т. е. разгона полезной нагрузки, а та

Коэффициент избытка окислителя
Рассмотрим соотношение компонентов в двухкомпонентном топливе. Горючее содержит преимущественно элементы с электроположительной валентностью (С, Н, AI, В и др.), а окислитель - с электроотрицательн

ЛЕКЦИЯ 4
Продукты сгорания твердого топлива оказывают воздействие на материалы тракта и для массового совершенства тепловой защиты ДУ необходимо выбирать или создавать рецептуры с меньшим значением величины

Гибридные топлива
Гибридным называют топливо, в котором один компонент перед запуском двигателя находится в твердом виде, а другой - в жидком. Твердый компонент размещен в корпусе двигателя (аналогия с РДТТ), жидкий

Горение жидких топлив
С момента впрыска в камеру до полного преобразования в конечные продукты сгорания компоненты проходят путь сложных превращений. Рабочий процесс в камере должен обеспечить максимальную полноту сгора

Горение твердых топлив
Горение твердых топлив есть последовательность процессов в соответствии со схемой рис. 4.3. После прогрева поверхностного слоя баллиститного топлива устройством запуска ДУ происходит газификация то

Горение гибридных топлив
Горение происходит по поверхности твердого компонента, капли жидкого компонента движутся вместе с продуктами сгорания как жидкогазовая смесь, продукты испарения жидкости диффундируют к поверхности

Термодинамические расчеты состава и параметров рабочего тела
Моделирование рабочих процессов в РД начинает с расчета равновесного состава продуктов сгорания и значений термодинамических параметров (и др.). Кроме того, необходимо знать переносные св

Термогазодинамика потока рабочего тела
Перейдем к термогазодинамике потоков – определению параметров движущегося рабочего тела. Рассмотрим наиболее простую модель движения газа: одномерное установившееся адиабатическое (изоэнтропическое

Течение газа в соплах
Сопло является трансформатором энергии в ракетном двигателе и его назначение - получение наибольшего значения скорости истечения рабочего тела, существенно превышающего значение скорости звука. Это

Профилирование сопла
В сопле камеры двигателя происходит расширение и разгон продуктов сгорания (рабочего тела), т.е. преобразование тепловой энергии, получаемой в камере сгорания, в кинетическую энергию движения газов

Потери удельного импульса в ракетных двигателях (в камере ЖРД и РДТТ)
Отличие параметров продуктов сгорания (рабочего тела) при действительном рабочем процессе в камере ЖРД, корпусе и СБ РДТТ (горение, расширение) от параметров идеального рабочего процесса учитываетс

Потери удельного импульса в сопле
Коэффициент потерь удельного импульса в сопле РД представляется в виде: где - составляющие потерь в сопле. Представление аддитивной суммой не совсем корректно ввид

Конвективный теплообмен
Перенос в движущейся среде любой субстанции (массы, импульса, теплоты) происходит как молекулярным хаотическим движением, так и конвективным (макроскопическим) движением молей газа или жидкости. Ко

Двигателя твердого топлива
Газовая фаза продуктов сгорания топлив содержит кислородосодержащие компоненты (и др.), которые через пограничный слой подходят к нагретой поверхности материалов тракта сопла и окисляют их. Возник

Радиационный теплообмен в ракетных двигателях
В высокотемпературных продуктах сгорания топлив ракетных двигателей происходят процессы переноса энергии в форме излучения - атомно-молекулярного перехода части внутренней энергии вещества в поток

Главная Энциклопедия Словари Подробнее

Ракетное топливо (РТ)

Вещество или совокупность веществ, являющихся источником энергии и рабочего тела для создания реактивной силы в ракетном двигателе (РД). По виду источника энергии различают химические и ядерные РТ. Наибольшее практическое применение для РД межконтинентальных баллистических ракет (МБР), используемых в РВСН, получили химические РТ, являющиеся одновременно источником энергии, выделяемой за счет экзотермических реакций горения, и источником рабочего тела, в качестве которого выступают продукты сгорания топлива. Химические РТ по агрегатному состоянию разделяются на жидкие (ЖРТ), твердые (ТРТ) и смешанного агрегатного состава.

ЖРТ - ракетные топлива, находящиеся в жидком агрегатном состоянии в условиях эксплуатации. ЖРТ подразделяются на однокомпонентные (унитарные) и двухкомпонентные, называемые также топливами раздельной подачи. В качестве однокомпонентных ЖРТ могут рассматриваться химические вещества или их смеси, способные в определенных условиях к химическим реакциям распада или горения с выделением тепловой энергии. К таким веществам относятся, например, гидразин N2H4, пероксид водорода Н2О2, этиленоксид СН2СН2О и др. Однокомпонентные ЖРТ используются в ЖРД малой тяги, в качестве топлив для РД систем управления и ориентации, а также для газогенерирующих систем. Двухкомпонентные ЖРТ состоят из окислителя и горючего. В качестве окислителей используются вещества, содержащие преимущественно атомы окислительных элементов. К таким веществам относятся жидкие фтор F2 и кислород О2, концентрированная азотная кислота HNO3, азотный тетраоксид N2O4. Наиболее эффективными горючими ЖРТ являются жидкий водород Н2, керосин Т-1 (фракция с пределами выкипания 150...280°С), гидразин N2H4, несимметричный диметилгидразин H2NN(CH3)2 (НДМГ). В качестве горючих могут использоваться также металлы Mg, Al и их гидриды, вводимые в состав жидких горючих в виде дисперсных порошков с образованием гелей. При подаче в камеру сгорания РД компоненты ЖРТ могут самовоспламеняться (например, N2O4 + H2NN(CH3)2) или не самовоспламеняться (ж.H2+ж.О2). В последнем случае используются специальные системы воспламенения или специальные пусковые топлива. Двухкомпонентные ЖРТ используются преимущественно в маршевых двигателях ракет и их ступеней. Для придания ЖРТ комплекса требуемых свойств в компоненты топлива обычно вводят специальные присадки, способствующие, например, повышению стабильности физико-химических свойств компонентов при хранении или эксплуатации. Основным достоинством ЖРТ, определяющим целесообразность их использования, является возможность получения высокого уровня энергетических характеристик.

Например, для топлива на основе жидких О2 и Н2 при рк/pа=7/0,1 МПа реализуется удельный импульс до 3835 м/с тогда как для наиболее высокоэнергетических твердых топлив его значение не превышает 3000 м/с в сопоставимых условиях.

Компоненты ЖРТ разделяют на высококипящие и низкокипящие. Высококипящий компонент - это компонент ЖРТ, имеющий температуру кипения выше 298К при стандартных условиях. Высококипящие компоненты в интервале температур эксплуатации представляют собой жидкости. К высококипящим компонентам относятся азотнокислотные окислители, азотный тетраоксид а также целый ряд широко используемых горючих - керосин Т-1, несимметричный диметилгидразин и др.

Низкокипящий компонент - это компонент ЖРТ, имеющий температуру кипения ниже 298К при стандартных условиях. В интервале температур эксплуатации ракетной техники низкокипящие компоненты обычно находятся в газообразном состоянии. Для содержания низкокипящих компонентов в жидком состоянии используется специальное технологическое оборудование. Среди низкокипящих компонентов выделяют так называемые криогенные компоненты, имеющие температуру кипения ниже 120К. К криогенным компонентам относятся сжиженные газы: кислород, водород, фтор и др. Для уменьшения потерь на испарение и увеличения плотности возможно применение криогенного компонента в шугообразном состоянии, в виде смеси твердой и жидкой фаз этого компонента.

ТРТ - гомогенные или гетерогенные взрывчатые системы, способные к самостоятельному горению в широком диапазоне давлений (0,1...100 МПа) с выделением значительного количества тепла и газообразных продуктов горения. По химическому составу и способу производства подразделяются на баллиститные и смесевые. Структурно-энергетической основой баллиститов являются нитраты целлюлозы - коллоксилины с содержанием азота около 12%, пластифицированные труднолетучими активными растворителями (нитроглицерином, динитратдиэтиленгликолем) или другими жидкими нитроэфирами. В состав баллиститов могут вводиться мощные взрывчатые вещества (МВВ) - октоген или гексоген, а также входят также стабилизаторы химической стойкости, стабилизаторы горения, модификаторы горения, технологические и энергетические добавки (порошки Al, Mg или их сплавы). Баллиститы представляют собой твердые растворы, находящиеся в интервале температур эксплуатации в стеклообразном физическом состоянии.

Смесевые ТРТ это гетерогенные смеси окислителя (преимущественно перхлората аммония NH4ClO4, перхлората калия КСlO4 или нитрата аммония NH4NO3) и горючего-связующего, представляющего собой пластифицированный полимер (например, бутилкаучук, полибутадиен, полиуретан) с ингредиентами системы отверждения, технологическими и специальными добавками. В состав смесевых ТРТ для повышения их энергетических характеристик могут вводиться мощные бризантные ВВ (гексоген или октоген) в количестве до 50% и до 20% металлических горючих (Al, Mg или их гидридов). Регулирование баллистических характеристик (скорости горения и ее зависимости от различных факторов) ТРТ обычно осуществляется изменением дисперсности порошкообразных компонентов или введением в состав топлив модификаторов горения. Компоненты смесевых ТРТ обычно выполняют несколько функций: окислители являются наполнителями полимерной матрицы, обеспечивают необходимый уровень баллистических и энергомассовых характеристик; горючие, представляющие собой в большинстве случаев пластифицированные полимеры, обеспечивают монолитность твердотопливного заряда и необходимый уровень его механических характеристик; металлическое горючее предназначено для увеличения плотности топлива и повышения его энергетических возможностей.

Определенное по массе количество ТРТ, являющееся основным источником энергии и рабочего тела, имеющее заданные форму, размеры и начальную поверхность горения называется зарядом твердого топлива (ЗТТ). Применительно к РДТТ под ЗТТ понимают часть РД, обеспечивающую требуемый закон газообразования рабочего тела. По методу монтажа в камере РДТТ заряды подразделяются на вкладные, прочноскрепленные литые в корпус и литые в корпус, раскрепленные с помощью манжет.

В диапазоне температур эксплуатации смесевые ТРТ находятся в высокоэластическом состоянии. ТРТ по сравнению с ЖРТ более просты в эксплуатации, но уступают им по энергетическим характеристикам.

Топлива смешанного агрегатного состава (гибридные) представляют собой двухкомпонентные РТ, в которых компоненты, находясь в различных агрегатных состояниях, могут быть жидкими, твердыми или газообразными. Из-за сложности компоновки РД гибридные РТ используются ограниченно.

В РД МБР РВСН используются как высококипящие самовоспламеняющиеся ЖРТ (преимущественно, N2O4+H2NN(CH3)2), так и смесевые ТРТ. ЖРТ используются в РД ампулизированных ракет шахтного базирования, а ТРТ в РД ракет как шахтного, так и подвижного базирования.

Табл. 1. Основные характеристики двухкомпонентных ЖРТ при p к /p а =7/0,1 МПа

Горючее

Массовое

соотношение

окислитель: горючее

Температура

горения, К

Плотность,

кг/м 3

Удельный

импульс,

Нс/кг

Окислитель O 2

Гидразин

Окислитель N 2 O 4

Гидразин

Окислитель HNO 3

Гидразин

Окислитель Н 2 O 2

Гидразин

Табл. 2. Принципиальный состав и основные характеристики баллиститных ТРТ

Компоненты и

характеристики

Без энергетич.

добавок

С энергетическими добавками