Hno3 цвет. Азотная кислота: формула химическая, свойства, получение и применение

23 февраля 2018

Один из наиболее важных продуктов, используемых человеком, - это нитратная кислота. Формула вещества - HNO 3 , оно же обладает и разнообразными физическими и химическими характеристиками, отличающими его от других неорганических кислот. В нашей статье мы изучим свойства азотной кислоты, ознакомимся с методами ее получения, а также рассмотрим сферы применения вещества в различных отраслях промышленности, медицины и сельского хозяйства.

Особенности физических свойств

Полученная в лаборатории азотная кислота, структурная формула которой приведена ниже, представляет собой бесцветную жидкость с неприятным запахом, более тяжелую, чем вода. Она быстро испаряется и имеет невысокую температуру кипения, равную +83 °С. Соединение легко смешивается с водой в любых пропорциях, образуя растворы различной концентрации. Более того, нитратная кислота может поглощать влагу из воздуха, то есть является гигроскопическим веществом. Структурная формула азотной кислоты неоднозначна, и может иметь две формы.

В молекулярном виде нитратная кислота не существует. В водных растворах различной концентрации вещество имеет вид следующих частиц: H 3 O + - ионов гидроксония и анионов кислотного остатка - NO 3 - .

Кислотно-основное взаимодействие

Азотная кислота, являющаяся одной из самых сильных кислот, вступает в реакции замещения, обмена, нейтрализации. Так, с основными оксидами соединение участвует в обменных процессах, в результате которых получается соль и вода. Реакция нейтрализации - основное химическое свойство всех кислот. Продуктами взаимодействия оснований и кислот всегда будут соответствующие соли и вода:

NaOH + HNO 3 → NaNO 3 + H 2 O

Видео по теме

Реакции с металлами

В молекуле азотной кислоты, формула которой HNO 3 , азот проявляет самую высокую степень окисления, равную +5, поэтому вещество обладает ярко выраженными окислительными свойствами. Как сильная кислота оно способно взаимодействовать с металлами, стоящими в ряду активности металлов до водорода. Однако она, в отличие от других кислот, может реагировать и с пассивными металлическими элементами, например, с медью или серебром. Реагенты и продукты взаимодействия определяются, как концентрацией самой кислоты, так и активностью металла.


Разбавленная азотная кислота и ее свойства

Если массовая доля HNO 3 составляет 0,4-0,6, то соединение проявляет все свойства сильной кислоты. Например, диссоциирует на катионы водорода и анионы кислотного остатка. Индикаторы в кислой среде, например, фиолетовый лакмус, в присутствии избытка ионов H + меняет свою окраску на красную. Важнейшая особенность реакций нитратной кислоты с металлами - это невозможность выделения водорода, который окисляется до воды. Вместо него образуются различные соединения - оксиды азота. Например, в процессе взаимодействия серебра с молекулами азотной кислоты, формула которой HNO 3 , обнаруживается монооксид азота, вода и соль - нитрат серебра. Степень окисления азота в сложном анионе снижается, так как происходит присоединение трех электронов.


С активными металлическими элементами, такими, как магний, цинк, кальций, нитратная кислота реагирует с образованием окиси азота, валентность которого наименьшая, она равна 1. Также образуются соль и вода:

4Mg + 10HNO 3 = NH 4 NO 3 + 4Mg(NO 3) 2 + 3H 2 O

Если же азотная кислота, химическая формула которой HNO 3 , очень разбавлена, в этом случае, продукты ее взаимодействия с активными металлами будут различными. Это может быть аммиак, свободный азот или оксид азота (І). Все зависит от внешних факторов, к которым можно отнести степень измельчения металла и температуру реакционной смеси. Например, уравнение ее взаимодействия с цинком будет иметь следующий вид:

Zn + 4HNO 3 = Zn(NO 3) 2 + 2NO 2 + 2H 2 O

Концентрированная HNO 3 (96-98%) кислота в реакциях с металлами восстанавливается до диоксида азота, причем, это обычно не зависит от положения металла в ряду Н. Бекетова. Так происходит в большинстве случаев, например, при взаимодействии с серебром.


Запомним исключение из правила: концентрированная азотная кислота в обычных условиях не реагирует с железом, алюминием и хромом, а пассивирует их. Это значит, что на поверхности металлов образуется защитная оксидная пленка, препятствующая дальнейшему их контакту с молекулами кислоты. Смесь вещества с концентрированной хлоридной кислотой в соотношении 3:1 называется царской водкой. Она имеет способность растворять золото.

Как нитратная кислота реагирует с неметаллами

Сильные окислительные свойства вещества приводят к тому, что в его реакциях с неметаллическими элементами, последние переходят в форму соответствующих кислот. Например, сера окисляется до сульфатной, бор - до борной, а фосфор - до фосфатных кислот. Приведенные ниже уравнения реакций подтверждают это:

S 0 + 2HN V O 3 → H 2 S VI O 4 + 2N II O

Получение азотной кислоты

Наиболее удобный лабораторный способ получения вещества - взаимодействие нитратов с концентрированной сульфатной кислотой. Ее проводят при слабом нагревании, не допуская повышения температуры, так как в этом случае получившийся продукт разлагается.

В промышленности азотную кислоту можно добыть несколькими способами. Например, окислением аммиака, полученным из азота воздуха и водорода. Производство кислоты проходит в несколько стадий. Промежуточными продуктами будут оксиды азота. Вначале образуется монооксид азота NO, затем кислородом воздуха его окисляют до двуокиси азота. Наконец, в реакции с водой и избытком кислорода из NO 2 добывают разбавленную (40-60%) нитратную кислоту. Если ее перегонять с концентрированной сульфатной кислотой, можно повысить массовую долю HNO 3 в растворе до 98.

Вышеописанный метод производства нитратной кислоты, впервые был предложен основателем азотной промышленности в России И. Андреевым еще в начале 20 века.

Применение

Как мы помним, химическая формула азотной кислоты HNO 3 . Какая особенность химических свойств обуславливает ее применение, если нитратная кислота является многотоннажным продуктом химического производства? Это высокая окислительная способность вещества. Его применяют в фармацевтической промышленности для получения лекарственных препаратов. Вещество служит исходным сырьем для синтеза взрывчатых соединений, пластических масс, красителей. Нитратная кислота применяется в военной технике в качестве окислителя для ракетного топлива. Большой ее объем применяют в производстве важнейших видов азотных удобрений - селитр. Они способствуют повышению урожайности важнейших сельскохозяйственных культур и повышают содержание в плодах и зеленой массе белка.


Области применения нитратов

Рассмотрев основные свойства, получение и применение азотной кислоты, остановимся на использовании важнейших ее соединений - солей. Они являются не только минеральными удобрениями, некоторые из них имеют большое значение в военной промышленности. Например, смесь, состоящая из 75% нитрата калия, 15% мелкодисперсного угля и 5% серы называется черным порохом. Из нитрата аммония, а также порошка угля и алюминия получают аммонал - взрывчатое вещество. Интересное свойство солей нитратной кислоты - это их способность разлагаться при нагревании.


Причем, продукты реакции будут зависеть от того, ион какого металла входит в состав соли. Если металлический элемент находится в ряду активности левее магния, от в продуктах обнаруживаются нитриты и свободный кислород. Если металл, входящий в состав нитрата, расположен от магния до меди включительно, то при нагревании соли происходит образование диоксида азота, кислорода и оксида металлического элемента. Соли серебра, золота или платины при высокой температуре образуют свободный металл, кислород и двуокись азота.

В нашей статье мы выяснили, какая химическая формула азотной кислоты в химии, и какие особенности ее окислительных свойств имеют наиболее важное значение.

Азотная кислота

HNO 3



Опытным путём доказано, что в молекуле азотной кислоты между двумя атомами кислорода и атомом азота две химические связи абсолютно одинаковые – полуторные связи. Степень окисления азота +5, а валентность равна IV.

Физические свойства

Азотная кислота HNO 3 в чистом виде - бесцветная жидкость с резким удушливым запахом, неограниченно растворимая в воде; t°пл.= -41°C; t°кип.= 82,6°С, r = 1,52 г/см 3 . В небольших количествах она образуется при грозовых разрядах и присутствует в дождевой воде.

N 2 + O 2 грозовые эл.разряды→ 2NO 2NO + O 2 → 2NO 2

Под действием света азотная кислота частично разлагается с выделением NО 2 и за cчет этого приобретает светло-бурый цвет:

4НNО 3 свет→ 4NО 2 (бурый газ) + 2Н 2 О + О 2

Азотная кислота высокой концентрации выделяет на воздухе газы, которые в закрытой бутылке обнаруживаются в виде коричневых паров (оксиды азота). Эти газы очень ядовиты, так что нужно остерегаться их вдыхания. Азотная кислота окисляет многие органические вещества. Бумага и ткани разрушаются вследствие окисления образующих эти материалы веществ. Концентрированная азотная кислота вызывает сильные ожоги при длительном контакте и пожелтение кожи на несколько дней при кратком контакте. Пожелтение кожи свидетельствует о разрушении белка и выделении серы (качественная реакция на концентрированную азотную кислоту – жёлтое окрашивание из-за выделения элементной серы при действии кислоты на белок – ксантопротеиновая реакция). То есть – это ожог кожи. Чтобы предотвратить ожог, следует работать с концентрированной азотной кислотой в резиновых перчатках.

Получение

1. Лабораторный способ KNO 3 + H 2 SO 4 (конц) → KHSO 4 + HNO 3 (при нагревании) 2. Промышленный способ Осуществляется в три этапа: a) Окисление аммиака на платиновом катализаторе до NO 4NH 3 + 5O 2 → 4NO + 6H 2 O (Условия: катализатор – Pt, t = 500˚С) б) Окисление кислородом воздуха NO до NO 2 2NO + O 2 → 2NO 2 в) Поглощение NO 2 водой в присутствии избытка кислорода 4NO 2 + О 2 + 2H 2 O ↔ 4HNO 3

Химические свойства

1. Очень сильная кислота. Диссоциирует в водном растворе практически нацело:

HNO 3 = H+ + NO 3 -

Реагирует:

2. с основными оксидами

CuO + 2HNO 3 = Cu(NO 3 ) 2 + H 2 O

CuO + 2H + + 2NO 3 - = Cu 2+ + 2NO 3 - + H 2 O

или CuO + 2H + = Cu 2+ + H 2 O

3. с основаниями

HNO 3 + NaOH = NaNO 3 + H 2 O

H + + NO 3 - + Na + + OH - = Na + + NO 3 - + H 2 O

или H + + OH - = H 2 O

4. вытесняет слабые кислоты из их солей


2HNO 3 + Na 2 CO 3 = 2NaNO 3 + H 2 O + CO 2

2H + + 2NO 3 - + 2Na + + СO 3 2- = 2Na + + 2NO 3 - + H 2 O + CO 2

2H + + СO 3 2- = H 2 O + CO 2

Специфические свойства азотной кислоты

Сильный окислитель

1. Разлагается на свету и при нагревании


4HNO 3 = 2H 2 O + 4NO 2 + O 2

Азотная кислота - бесцветную жидкость с едким запахом, плотностью 1, 52 г/см3 , температура кипения 84°С, при температуре -41°С затвердевает в бесцветное кристаллическое вещество. Обычно применяемая на практике, концентрированная азотная кислота содержит 65 - 70% HNO3 (максимальная плотность 1, 4 г/см3); с водой кислота смешивается в любых соотношениях. Существует также дымящая азотная кислота с концентрацией 97 - 99%.

Азотная кислота высокой концентрации выделяет на воздухе газы, которые в закрытой бутылке обнаруживаются в виде коричневых паров (оксиды азота). Эти газы очень ядовиты, так что нужно остерегаться их вдыхания. Азотная кислота окисляет многие органические вещества. Бумага и ткани разрушаются вследствие окисления образующих эти материалы веществ. Концентрированная азотная кислота вызывает сильные ожоги при длительном контакте и пожелтение кожи на несколько дней при кратком контакте. Пожелтение кожи свидетельствует о разрушении белка и выделении серы (качественная реакция на концентрированную азотную кислоту – жёлтое окрашивание из-за выделения элементной серы при действии кислоты на белок – ксантопротеиновая реакция). То есть – это ожог кожи.

Чтобы предотвратить ожог, следует работать с концентрированной азотной кислотой в резиновых перчатках. В то же время обращение с азотной кислотой менее опасно, чем, например, с серной, она быстро испаряется и не остаётся в неожиданных местах. Брызги азотной кислоты следует смывать большим количеством воды, а ещё лучше смачивать раствором соды.

Дымящая азотная кислота при хранении под действием теплоты и на свету частично разлагается:

4HNO3 = 2H2O + 4NO2 + O2.

Чем выше температура и чем концентрированнее кислота, тем быстрее идёт разложение. Поэтому хранят её в прохладном и тёмном месте. Выделяющийся диоксид азота растворяется в кислоте и придаёт ей бурую окраску.

Разбавленную кислоту легко приготовить, выливая концентрированную кислоту в воду.

Разбавленную азотную кислоту хранят и перевозят в таре из хромистой стали, концентрированную – в алюминиевой таре, т.к. концентрированная кислота пассивирует алюминий, железо и хром из-за образования нерастворимых плёнок оксидов:

2Al + 6HNO3 = Al2O3 + 6NO2 + 3H2O.

Небольшие количества хранят в стеклянных бутылках. Азотная кислота сильно разъедает резину. Поэтому бутылки должны быть с притёртыми или полиэтиленовыми пробками.

Применяют азотную кислоту в основном в виде водных растворов, является одной из составных частей царской водки, содержится в пробирных кислотах. В промышленности применяют для получения комбинированных азотных удобрений, для растворения руд и концентратов, в производстве серной кислоты, различных органических нитропродуктов, в ракетной технике как окислитель горючего и т. д.

Промышленное получение азотной кислоты

Современные промышленные способы получения азотной кислоты основаны на каталитическом окислении аммиака кислородом воздуха. При« описании свойств аммиака было указано, что он горит в кислороде, причём продуктами реакции являются вода и свободный азот. Но в присутствии катализаторов - окисление аммиака кислородом может протекать иначе.

Если пропускать смесь аммиака с воздухом над катализатором, то при 750 °С и определен-ном составе смеси происходит почти полное превращение

Образовавшийся NO легко переходит в NO2, который с водой в присутствии кислорода воздуха дает азотную кислоту.

В качестве катализаторов при окислении аммиака используют сплавы на основе платины.
Получаемая окислением аммиака азотная кислота имеет концентрацию, не превышающую 60%. При необходимости ее концен-трируют,
Промышленностью выпускается разбавленная азотная кислота концентрацией 55, 47 и 45%, а концентрированная-98 и 97%,

Применение азотной кислоты

Кислота азотная применяется в производство азотных и комбинированных удобрений (натриевой, аммиачной, кальциевой и калиевой селитры, нитрофоса, нитрофоски), различных сернокислых солей, взрывчатых веществ (тринитротолуола и др.), органических красителей.

В органическом синтезе широко применяется смесь концентрированной азотной кислоты и серной кислоты - «нитрующая смесь».

В металлургии азотная кислота применяется для растворения и травления металлов, а также для разделения золота и серебра. Также азотную кислоту применяют в химической промышленности, в производстве взрывчатых веществ, в производстве полупродуктов для получения синтетических красителей и других химикатов.

Кислота азотная техническая используется при никелировании, гальванизации и хромировании деталей, а ткаже в полиграфической промышленности. Широко используется кислота азотная в молочной, электротехнической промышленности.

Плотность растворов различной концентрации азотной кислоты

Плотность,

г/см 3

Концентрация

Плотность,
г/см 3

Концентрация

г/л.

г/л.

1, 000

0, 3296

3, 295

1, 285

46, 06

591, 9

1, 005

1, 255

12, 61

1, 290

46, 85

604, 3

1, 010

2, 164

21, 85

1, 295

47, 63

616, 8

1, 015

3, 073

31, 19

1, 300

48, 42

629, 5

1, 020

3, 982

40, 61

1, 305

49, 21

642, 1

1, 025

4, 883

50, 05

1, 310

50, 00

644, 7

1, 030

5, 784

59, 57

1, 315

50, 85

668, 5

1, 035

6, 661

68, 93

1, 320

51, 71

682, 4

1, 040

7, 530

78, 32

1, 325

52, 56

696, 3

1, 045

8, 398

87, 77

1, 330

53, 41

710, 1

1, 050

9, 259

97, 22

1, 335

54, 27

724, 0

1, 055

10, 12

106, 7

1, 340

55, 13

738, 5

1, 060

10, 97

116, 3

1, 345

56, 04

753, 6

1, 065

11, 81

125, 8

1, 350

56, 95

768, 7

1, 070

12, 65

135, 3

1, 355

57, 87

783, 8

1, 075

13, 48

145, 0

1, 360

58, 78

799, 0

1, 080

14, 31

154, 6

1, 365

59, 69

814, 7

1, 085

15, 13

164, 1

1, 370

60, 67

831, 1

1, 090

15, 95

173, 8

1, 375

61, 69

848, 1

1, 095

16, 76

183, 5

1, 380

62, 70

865, 1

1, 100

17, 58

193, 3

1, 385

63, 72

882, 8

1, 105

18, 39

203, 1

1, 390

64, 74

900, 4

1, 110

19, 19

213, 0

1, 395

65, 84

918, 1

1, 115

20, 00

223, 0

1, 400

66, 97

937, 6

1, 120

20, 79

232, 9

1, 405

68, 10

956, 6

1, 125

21, 59

242, 8

1, 410

69, 23

976, 0

1, 130

22, 38

252, 8

1, 415

70, 34

996, 2

1, 135

23, 16

262, 8

1, 420

71, 63

1017

1, 140

23, 94

272, 8

1, 425

72, 86

1038

1, 145

24, 71

282, 9

1, 430

74, 09

1059

1, 150

25, 48

292, 9

1, 435

74, 35

1081

1, 155

26, 24

303, 1

1, 440

76, 71

1105

1, 160

27, 00

313, 2

1, 445

78, 07

1128

1, 165

27, 26

323, 4

1, 450

79, 43

1152

1, 170

28, 51

333, 5

1, 455

80, 88

1177

1, 175

29, 25

343, 7

1, 460

82, 39

1203

1, 180

30, 00

354, 0

1, 465

83, 91

1229

1, 185

30, 74

364, 2

1, 470

8550

1257

1, 190

31, 47

374, 5

1, 475

87, 29

1287

1, 195

32, 21

385, 0

1, 480

89, 07

1318

1, 200

32, 94

395, 3

1, 485

91, 13

1353

1, 205

33, 68

405, 8

1, 490

93, 19

1393

1, 210

34, 41

416, 3

1, 495

95, 46

1427

1, 215

35, 16

427, 1

1, 500

96, 73

1450

1, 220

35, 93

438, 3

1, 501

96, 98

1456

1, 225

36, 70

449, 6

1, 502

97, 23

1461

1, 230

37, 48

460, 9

1, 503

97, 49

1465

1, 235

38, 25

472, 4

1, 504

97, 74

1470

1, 240

39, 02

483, 8

1, 505

97, 99

1474

1, 245

39, 80

495, 5

1, 506

98, 25

1479

1, 250

40, 58

505, 2

1, 507

98, 50

1485

1, 255

41, 36

519, 0

1, 508

98, 76

1490

1, 260

42, 14

530, 9

1, 509

99, 01

1494

1, 265

42, 92

542, 9

1, 510

99, 26

1499

1, 270

43, 70

555, 0

1, 511

99, 52

1503

1, 275

44, 48

567, 2

1, 512

99, 74

1508

1, 280

45, 27

579, 4

1, 513

100, 00

1513

Азотная кислота – бесцветная, «дымящаяся» на воздухе жидкость с едким запахом. Химическая формула HNO3.

Физические свойства. При температуре 42 °C застывает в виде белых кристаллов. Безводная азотная кислота закипает при атмосферном давлении и 86 °C. С водой смешивается в произвольных соотношениях.

Под воздействием света концентрированная HNO3 разлагается на оксиды азота:

HNO3 хранят в прохладном и темном месте. Валентность азота в ней – 4, степень окисления – +5, координационное число – 3.

HNO3 – сильная кислота. В растворах полностью распадается на ионы. Взаимодействует с основными оксидами и основаниями, с солями более слабых кислот. HNO3 обладает сильной окислительной способностью. Способна восстанавливаться с одновременным образованием нитрата до соединений, в зависимости от концентрации, активности взаимодействующего металла и условий:

1) концентрированная HN03 , взаимодействуя с малоактивными металлами, восстанавливается до оксида азота (IV) NO2:

2) если кислота разбавленная, то она восстанавливается до оксида азота (II) NO:

3) более активные металлы восстанавливают разбавленную кислоту до оксида азота (I) N2O:

До солей аммония восстанавливается очень разбавленная кислота:

Au, Pt, Rh, Ir, Ta, Ti не реагируют с концентрированной HNO3, а Al, Fe, Co и Cr – «пассивируются».

4) с неметаллами HNO3 реагирует, восстанавливая их до соответствующих кислот, а сама восстанавливается до оксидов:

5) HNO3 окисляет некоторые катионы и анионы и неорганические ковалентные соединения.

6) вступает во взаимодействие со многими органическими соединениями – реакция нитрования.

Промышленное получение азотной кислоты: 4NH3 + 5O2 = 4NO + 6H2O.

Аммиак – NO переходит в NO2, который с водой в присутствии кислорода воздуха дает азотную кислоту.

Катализатор – платиновые сплавы. Получаемая HNO3 не более 60 %. При необходимости ее концентрируют. Промышленностью выпускается разбавленная HNO3 (47–45 %), а концентрированная HNO3 (98–97 %). Концентрированную кислоту перевозят в алюминиевых цистернах, разбавленную – в цистернах из кислотоупорной стали.

34. Фосфор

Фосфор (Р) находится в 3-м периоде, в V группе, главной подгруппы периодической системы Д.И. Менделеева. Порядковый номер 15, заряд ядра +15, Аr = 30,9738 а.е. м... имеет 3 энергетических уровня, на энергетической оболочке 15 электронов, из них 5 валентных. У фосфора появляется d-подуровень. Электронная конфигурация Р: 1s2 2s2 2p63s2 3p33d0. Характерна sp3-гибридизация, реже sp3d1. Валентность фосфора – III, V. Наиболее характерная степень окисления +5 и -3, менее характерные: +4, +1, -2, -3. Фосфор может проявлять и окислительные и восстановительные свойства: принимать и отдавать электроны.

Строение молекулы: способность образования?-связи менее выражена, чем у азота – при обычной температуре в газовой фазе фосфор представлен в виде молекул Р4, имеющих форму равносторонних пирамид с углами по 60°. Связи между атомами ковалентные, неполярные. Каждый атом Р в молекуле связан стремя другими атомами?-связями.

Физические свойства : фосфор образует три аллотропных модификации: белый, красный и черный. Каждая модификация имеет свою температуру плавления и замерзания.

Химические свойства:

1) при нагревании Р4 обратимо диссоциирует:

2) свыше 2000 °C Р2 распадается на атомы:

3) фосфор образует соединения с неметаллами:

Непосредственно соединяется со всеми галогенами: 2Р + 5Cl2 = 2РCl5.

При взаимодействии с металлами фосфор образует фосфиды:

Соединяясь с водородом, образует газ фос-фин: Р4 + 6Н2 = 4РН3?.

При взаимодействии с кислородом образует ангидрид Р2О5: Р4 + 5О2 = 2Р2О5.

Получение: фосфор получают прокаливанием смеси Са3(Р O4)2 с песком и коксом в электропечи при температуре 1500 °C без доступа воздуха: 2Са3(РO4)2 + 1 °C + 6SiO2 = 6СаSiO3 + 1 °CO + P4?.

В природе фосфор в чистом виде не встречается, а образуется в результате химической активности. Основными природными соединениями фосфора являются минералы: Са3(РO4)2 – фосфорит; Са3(РO4)2?СаF2 (или СаCl) или Са3(РO4)2?Са(ОН)2 – апатит. Велико биологическое значение фосфора. Фосфор входит в состав некоторых растительных и животных белков: белок молока, крови, мозговой и нервной ткани. Большое его количество содержится в костях позвоночных животных в виде соединений: 3Са3(РO4)2?Са(ОН)2 и 3Са3(РO4)2?СаСО3?Н2О. Фосфор является обязательным компонентом нуклеиновых кислот, играя роль в передачи наследственной информации. Фосфор содержится в зубной эмали, в тканях в форме лецитина – соединения жиров с фосфорноглицериновыми эфирами.

Азотная кислота: свойства и реакции,
лежащие в основе производства

9 класс

Приходя на урок химии, ребята хотят узнать новое и применить свои знания, особенно им нравится самостоятельно добывать информацию и экспериментировать. Данный урок построен так, чтобы, изучая новый материал, учащиеся могли привлечь ранее приобретенные знания: строение атома азота, типы химической связи, электролитическая диссоциация, окислительно-восстановительные реакции, техника безопасности при проведении эксперимента.

Цели. Повторить классификацию и свойства оксидов азота, а также общие свойства азотной кислоты в свете теории электролитической диссоциации (ТЭД). Познакомить учащихся с окислительными свойствами азотной кислоты на примере взаимодействия разбавленной и концентрированной кислоты с металлами. Дать понятие о способах получения азотной кислоты и областях ее применения.

Оборудование. На каждом столе перед учащимися план урока, схема взаимодействия азотной кислоты с металлами, набор реактивов, тесты для закрепления изученного материала.

П л а н у р о к а

Оксиды азота.

Состав и строение молекулы азотной кислоты.

Физические свойства азотной кислоты.

Химические свойства азотной кислоты.

Получение азотной кислоты.

Применение азотной кислоты.

Закрепление материала (тест по вариантам).

ХОД УРОКА

Оксиды азота

Учитель. Вспомните и напишите формулы оксидов азота. Какие оксиды называются солеобразующими, какие – несолеобразующими? Почему?

Ученики самостоятельно записывают формулы пяти оксидов азота, называют их, вспоминают азотсодержащие кислородные кислоты и устанавливают соответствие между оксидами и кислотами. Один из учеников записывает на доске (таблица).

Таблица

Сопоставление оксидов азота, кислот и солей

Демонстрационный опыт:
взаимодействие оксида азота(IV) с водой

Учитель. В сосуд с NO 2 приливаем немного воды и взбалтываем содержимое, затем испытываем полученный раствор лакмусом.

Что наблюдаем? Раствор краснеет из-за образовавшихся двух кислот.

2NO 2 + H 2 O = HNO 2 + HNO 3 .

Степень окисления азота в NO 2 равна +4, т.е. она является промежуточной между +3 и +5, которые в растворе более устойчивы, поэтому оксиду азота(IV) соответствуют сразу две кислоты – азотистая и азотная.

Состав и строение молекулы

Учитель. На доске запишите молекулярную формулу азотной кислоты, вычислите ее молекулярную массу и отметьте степени окисления элементов. Составьте структурную и электронную формулы.

Ученики составляют следующие формулы (рис. 1).

Рис. 1. Неверные структурная и электронная формулы азотной кислоты

Учитель. Согласно этим формулам вокруг азота вращается десять электронов, но этого не может быть, т.к. азот находится во втором периоде и максимально на внешнем слое у него может быть только восемь электронов. Это противоречие устраняется, если предположить, что между атомом азота и одним из атомов кислорода образуется ковалентная связь по донорно-акцепторному механизму (рис. 2).

Рис. 2. Электронная формула азотной кислоты.
Электроны атома азота обозначены черными точками

Тогда структурную формулу азотной кислоты можно было бы изобразить так (рис. 3):

Рис. 3. Структурная формула азотной кислоты
(донорно-акцепторная связь показана стрелкой)

Однако опытным путем доказано, что двойная связь равномерно распределена между двумя атомами кислорода. Степень окисления азота в азотной кислоте равна +5, а валентность (обратите внимание) равна четырем, ибо имеются только четыре общие электронные пары.

Физические свойства азотной кислоты

Учитель. Перед вами флаконы с разбавленной и концентрированной азотной кислотой. Опишите физические свойства, которые вы наблюдаете .

Ученики описывают азотную кислоту как жидкость тяжелее воды, желтоватого цвета, с резким запахом. Раствор азотной кислоты без цвета и без запаха.

Учитель. Я добавлю, что температура кипения азотной кислоты +83 °С, температура замерзания –41 °С, т.е. при обычных условиях это жидкость. Резкий запах и то, что при хранении она желтеет, объясняется тем, что концентрированная кислота малоустойчива и под действием света или при нагревании частично разлагается.

Химические свойства кислоты

Учитель. Вспомните, с какими веществами взаимодействуют кислоты? (Учащиеся называют.)

Перед вами реактивы, проделайте перечисленные реакции* и запишите свои наблюдения (реакции записывать надо в свете ТЭД).

А теперь обратимся к специфическим свойствам азотной кислоты.

Мы отметили, что кислота при хранении желтеет, теперь докажем это химической реакцией:

4HNO 3 = 2H 2 O + 4NO 2 + O 2 .

(Учащиеся самостоятельно записывают электронный баланс реакции.)

Выделяющийся «бурый газ» (NO 2) окрашивает кислоту.

Особо ведет себя эта кислота по отношению к металлам. Вы знаете, что металлы вытесняют водород из растворов кислот, но при взаимодействии с азотной кислотой этого не происходит.

Посмотрите на схему у вас на парте (рис. 4), где показано, какие газы выделяются при реакции кислоты различной концентрации с металлами. (Работа со схемой.)

Рис. 4. Схема взаимодействия азотной кислоты с металлами

Демонстрационный опыт:
взаимодействие концентрированной азотной кислоты с медью

Очень эффективна демонстрация реакции азотной кислоты (конц.) с порошком меди или мелко нарезанными кусочками медной проволоки:

Учащиеся самостоятельно записывают электронный баланс реакции:

Получение кислоты

Учитель. Урок будет неполным, если мы не рассмотрим вопрос получения азотной кислоты.

Лабораторный способ: действие концентрированной серной кислоты на нитраты (рис. 5).

NaNO 3 + H 2 SO 4 = NaHSO 4 + HNO 3 .

В промышленности кислоту в основном получают аммиачным способом.

Рис. 5. Для получения азотной кислоты в лаборатории до сих пор
удобно использовать старинную химическую посуду – реторту

Способ получения кислоты из азота и кислорода при температуре свыше 2000 °С (электродуговой) особого распространения не получил.

В России история получения азотной кислоты связана с именем химика-технолога Ивана Ивановича Андреева (1880–1919).

Он в 1915 г. создал первую установку по производству кислоты из аммиака и реализовал разработанный способ в заводском масштабе в 1917 г. Первый завод был построен в Донецке.

Этот метод включает несколько этапов.

1) Подготовка аммиачно-воздушной смеси.

2) Окисление аммиака кислородом воздуха на платиновой сетке:

4NH 3 + 5O 2 = 4NO + 6H 2 O.

3) Дальнейшее окисление оксида азота(II) до оксида азота(IV):

2NO + O 2 = 2NO 2 .

4) Растворение оксида азота(IV) в воде и получение кислоты:

3NO 2 + H 2 O = 2HNO 3 + NO.

Если растворение проводить в присутствии кислорода, то весь оксид азота(IV) переходит в азотную кислоту.

5) Заключительный этап получения азотной кислоты – очистка газов, выходящих в атмосферу, от оксидов азота. Состав этих газов: до 98% азота, 2–5% кислорода и 0,02–0,15% оксидов азота. (Азот изначально был в воздухе, взятом для окисления аммиака.) Если оксидов азота в этих отходящих газах больше 0,02%, то специально проводят каталитическое восстановление их до азота, потому что даже такие малые количества этих оксидов приводят к большим экологическим проблемам.

После всего сказанного возникает вопрос: а зачем нам нужна кислота?

Применение кислоты

Учитель. Азотную кислоту используют для производства: азотных удобрений, и в первую очередь аммиачной селитры (как ее получают?); взрывчатых веществ (почему?); красителей; нитратов, о которых речь пойдет на следующем уроке.

Закрепление материала

Фронтальный опрос класса

– Почему степень окисления азота в азотной кислоте +5, а валентность четыре?

– С какими металлами азотная кислота не вступает в реакцию?

– Вам нужно распознать соляную и азотную кислоты, на столе три металла – медь, алюминий и железо. Как вы поступите и почему?

Тест

В а р и а н т 1

1. Какой ряд чисел соответствует распределению электронов по энергетическим уровням в атоме азота?

1) 2, 8, 1; 2) 2, 8, 2; 3) 2, 4; 4) 2, 5.

2. Закончите уравнения практически осуществимых реакций:

1) HNO 3 (разб.) + Cu … ;

2) Zn + HNO 3 (конц.) … ;

3) HNO 3 + MgCO 3 … ;

4) CuO + KNO 3 … .

3. Укажите, какое уравнение иллюстрирует одну из стадий процесса промышленного производства азотной кислоты.

1) 4NH 3 + 5O 2 = 4NO + 6H 2 O;

2) 5HNO 3 + 3P + 2H 2 O = 3H 3 PO 4 + 5NO;

3) N 2 + O 2 = 2NO.

4. Отрицательная степень окисления проявляется азотом в соединении:

1) N 2 O; 2) NO; 3) NO 2 ; 4) Na 3 N.

5. Взаимодействие медной стружки с концентрированной азотной кислотой приводит к образованию:

1) NO 2 ; 2) NO; 3) N 2 ; 4) NH 3 .

В а р и а н т 2

1. Значение высшей валентности азота равно:

1) 1; 2) 2; 3) 5; 4) 4.

2. Запишите возможное взаимодействие концентрированной азотной кислоты со следующими металлами: натрий, алюминий, цинк, железо, хром.

3. Выберите вещества, являющиеся сырьем для производства азотной кислоты:

1) азот и водород;

2) аммиак, воздух и вода;

3) нитраты.

4. Концентрированная азотная кислота не реагирует с:

1) углекислым газом;

2) соляной кислотой;

3) углеродом;

4) гидроксидом бария.

5. При взаимодействии очень разбавленной кислоты с магнием образуется:

1) NO 2 ; 2) NO; 3) N 2 O; 4) NH 4 NO 3 .

Ответы на тесты

В а р и а н т 1.

1 – 4;

1) 8HNO 3 (разб.) + 3Cu = 3Cu(NO 3) 2 + 2NO + 4H 2 O;

2) Zn + 4HNO 3 (конц.) = Zn(NO 3) 2 + 2NO 2 + 2H 2 O;

3) 2HNO 3 + MgCO 3 = Mg(NO 3) 2 + CO 2 + H 2 O;

3 – 1; 4 – 4; 5 – 1.

В а р и а н т 2.

1 – 4;

Na + 2HNO 3 (конц.) = NaNO 3 + NO 2 + H 2 O,

Zn + 4HNO 3 (конц.) = Zn(NO 3) 2 + 2NO 2 + 2H 2 O;

3 – 2; 4 – 1; 5 – 4.

* Например, можно предложить ребятам проделать следующие лабораторные опыты.

1) В пробирку с раствором азотной кислоты добавьте лакмус и постепенно добавляйте раствор гидроксида натрия. Наблюдения запишите.

2) Положите в пробирку немного мела, добавьте разбавленную азотную кислоту.

3) Положите в пробирку немного оксида меди(II), добавьте разбавленную азотную кислоту. Какого цвета раствор? Зажмите пробирку в держателе и погрейте. Как изменяется цвет раствора? О чем говорит изменение цвета? – Прим. ред .