Использовать энергию солнечного света для создания. Варианты использования солнечной энергии в хозяйственной деятельности. Солнечная энергия для дома

В последние годы ученых особенно интересуют альтернативные источники энергии. Нефть и газ рано или поздно закончатся, поэтому подумать о том, как мы будем выживать в этой ситуации, приходится уже сейчас. В Европе активно используются ветряки, кто-то пытается извлечь энергию из океана, а мы поговорим о солнечной энергии. Ведь звезда, которую мы практически каждый день видим в небе, может помочь нам сберечь и улучшить экологическую обстановку. Значение солнца для Земли трудно переоценить - оно дает тепло, свет и позволяет функционировать всему живому на планете. Так почему бы не найти ему еще одно применение?

Немного истории

В середине 19 века физик Александр Эдмон Беккерель открыл фотогальванический эффект. А к концу столетия Чарльз Фриттс создал первый прибор, способный перерабатывать солнечную энергию в электричество. Для этого использовался селен, покрытый тонким слоем золота. Эффект был слабым, но именно это изобретение зачастую связывают с началом эры солнечной энергии. Некоторые ученые не согласны с такой формулировкой. Они называют родоначальником эры солнечной энергии всемирно известного ученого Альберта Эйнштейна. В 1921 году он получил Нобелевскую премию за объяснение законов внешнего фотоэффекта.

Казалось бы, солнечная энергия - это перспективный путь развития. Но существует немало препятствий для того, чтобы она вошла в каждый дом - в основном, экономических и экологических. Из чего складывается стоимость солнечных батарей, какой вред они могут нанести окружающей среде и какие еще существуют способы получения энергии, узнаем ниже.

Способы накопления

Самой актуальной задачей, связанной с приручением энергии солнца, является не только ее получение, но и аккумуляция. И именно это является самым сложным. В настоящее время учеными было разработано только 3 способа полноценного приручения солнечной энергии.

Первый основан на использовании параболического зеркала и немного напоминает игру с лупой, которая всем знакома с детства. Сквозь линзу свет проходит, собираясь в одной точке. Если в этом месте положить кусочек бумаги, она загорится, поскольку температура скрещенных солнечных лучей невероятно высока. Параболическое зеркало представляет собой вогнутый диск, напоминающий неглубокую чашу. Это зеркало, в отличие от лупы, не пропускает, а отражает солнечный свет, собирая его в одной точке, которая обычно направлена на черную трубу с водой. Такой цвет используют потому, что он лучше всего поглощает свет. Вода в трубе под действие солнечных лучей нагревается и может использоваться для получения электричества или для отопления небольших домов.

Плоский нагреватель

В этом способе используется совсем другая система. Приемник солнечной энергии выглядит как многослойная конструкция. Принцип его работы выглядит так.

Проходя через стекло, лучи попадают на затемненный металл, который, как известно, лучше поглощает свет. Солнечная радиация превращается в и нагревает воду, которая находится под железной пластиной. Далее все происходит как в первом способе. Нагретую воду можно использовали либо для отопления помещений, либо для получения электрической энергии. Правда, эффективность такого метода не настолько высока, чтобы использовать его повсеместно.

Как правило, полученная таким образом солнечная энергия - это тепло. Для получения электричества гораздо чаще используют третий способ.

Солнечные элементы

Больше всего мы знакомы именно с таким способом получения энергии. Он подразумевает использование различных батарей или солнечных панелей, которые можно встретить на крышах многих современных домов. Такой способ сложнее ранее описанных, но является намного более перспективным. Именно он дает возможность солнца в электричество в промышленных масштабах.

Специальные панели, предназначенные для улавливания лучей, делают из обогащенных кристаллов кремния. Солнечный свет, попадая на них, сбивает электрон с орбиты. На его место тут же стремится другой, таким образом получается непрерывная подвижная цепочка, которая и создает ток. Он при необходимости сразу используется для обеспечения приборов или накапливается в виде электроэнергии в специальных аккумуляторах.

Популярность этого способа обоснована тем, что он позволяет получить более 120 Вт всего с одного квадратного метра солнечной батареи. При этом панели имеют сравнительно небольшую толщину, что позволяет размещать их практически везде.

Типы кремниевых панелей

Существует несколько видов солнечных батарей. Первые выполнены с использованием монокристаллического кремния. Их коэффициент полезного действия составляет примерно 15%. Такие являются наиболее дорогими.

КПД элементов, изготовленных из поликристаллического кремния, достигает 11%. Стоят они меньше, поскольку материал для них получают по упрощенной технологии. Третий тип является наиболее экономичным и отличается минимальным КПД. Это панели из аморфного кремния, то есть некристаллического. Кроме низкой эффективности, они имеют еще один существенный недостаток - недолговечность.

Некоторые производители для увеличения КПД задействуют обе стороны панели солнечной батареи - тыльную и фронтальную. Это позволяет улавливать свет в больших объемах и увеличивает количество получаемой энергии на 15-20%.

Отечественные производители

Солнечная энергия на Земле получает все большее распространение. Даже в нашей стране заинтересованы в изучении этой отрасли. Несмотря на то что в России не очень активно идет развитие альтернативной энергетики, определенных успехов удалось добиться. В настоящее время созданием панелей для получения солнечной энергии занимаются несколько организаций - в основном это научные институты различной направленности и заводы по производству электрооборудования.

  1. НПФ "Кварк".
  2. ОАО «Ковровский механический завод».
  3. Всероссийский НИИ электрификации сельского хозяйства.
  4. НПО машиностроения.
  5. АО ВИЭН.
  6. ОАО «Рязанский завод металлокерамических приборов».
  7. АООТ Правдинский опытный завод источников тока «Позит».

Это только небольшая часть предприятий, принимающих активное участие в развитии альтернативной

Влияние на окружающую среду

Отказ от угольных и нефтяных источников энергии связан не только с тем, что эти ресурсы рано или поздно закончатся. Дело в том, что они сильно вредят окружающей среде - загрязняют почву, воздух и воду, способствуют развитию заболеваний у людей и снижению иммунитета. Именно поэтому альтернативные источники энергии должны быть безопасны с экологической точки зрения.

Кремний, который используется для производства фотоэлементов, сам по себе безопасен, поскольку является природным материалом. Но после его очистки остаются отходы. Именно они могут нанести вред человеку и окружающей среде при неправильном использовании.

Кроме того, на участке, полностью заставленном солнечными батареями, может нарушиться естественное освещение. Это приведет к изменениям в существующей экосистеме. Но в целом влияние на окружающую среду устройств, предназначенных для преобразования солнечной энергии, минимально.

Экономичность

Самые большие затраты по связаны с дороговизной сырья. Как мы уже выяснили, специальные панели создаются с использованием кремния. Несмотря на то что этот минерал широко распространен в природе, с его добычей связаны большие проблемы. Дело в том, что кремний, который составляет более четверти массы земной коры, не подходит для производства солнечных батарей. Для этих целей пригоден только чистейший материал, получаемый промышленным способом. К сожалению, из песка получить чистейший кремний крайне проблематично.

По цене данный ресурс сравним с ураном, использующимся на АЭС. Именно поэтому стоимость солнечных батарей в настоящее время остается на довольно высоком уровне.

Современные технологии

Первые попытки приручить солнечную энергию появились достаточно давно. С тех пор многие ученые активно заняты поисками максимально эффективного оборудования. Оно должно быть не только экономически выгодным, но также компактным. Его КПД должен стремиться к максимуму.

Первые шаги к идеальному прибору для получения и преобразования солнечной энергии были сделаны с изобретением кремниевых батарей. Конечно, цена достаточно высока, но зато панели могут быть размещены на крышах и стенах домов, где они никому не будут мешать. А эффективность таких батарей неоспорима.

Но лучший способ увеличить популярность солнечной энергии - сделать ее более дешевой. Немецкие ученые уже предложили заменить кремний синтетическими волокнами, которые могут быть интегрированы в ткань или другие материалы. КПД такой солнечной батареи не очень высок. Но рубашка с вкраплением синтетических волокон сможет, по крайней мере, обеспечить электроэнергией смартфон или плеер. Активно ведутся работы и в области нанотехнологий. Вероятно, именно они позволят солнцу стать наиболее популярным источником энергии уже в этом столетии. Специалисты компании Scates AS из Норвегии уже заявили, что нанотехнологии позволят сократить стоимость солнечных панелей в 2 раза.

Солнечная энергия для дома

О жилье, которое само себя будет обеспечивать, наверняка мечтают многие: нет зависимости от централизованного отопления, сложностей с оплатой счетов и вреда для окружающей среды. Уже сейчас во многих странах активно строится жилье, потребляющее только энергию, полученную из альтернативных источников. Яркий пример - так называемый солнечный дом.

В процессе строительства он потребует больших вложений, чем традиционный. Но зато после нескольких лет эксплуатации все затраты окупятся - не придется платить за отопление, горячую воду и электричество. В солнечном доме все эти коммуникации привязаны к специальным фотоэлектрическим панелям, размещенным на крыше. Причем полученные таким образом энергетические ресурсы не только расходуются на текущие нужды, но и накапливаются для использования в ночное время и при пасмурной погоде.

В настоящее время строительство таких домов ведется не только в странах, приближенных к экватору, где добывать солнечную энергию проще всего. Их возводят также и в Канаде, Финляндии и Швеции.

Плюсы и минусы

Развитие технологий, позволяющих повсеместно использовать солнечную энергию, могло бы вестись более активно. Но существую определенные причины, по которым это все еще не является приоритетной задачей. Как мы уже говорили выше, при производстве панелей вырабатываются вредные для окружающей среды вещества. Кроме того, готовое оборудование содержит в своем составе галлий, мышьяк, кадмий и свинец.

Немало вопросов вызывает и необходимость утилизации фотоэлектрических панелей. Через 50 лет работы они станут непригодными для службы, и их придется каким-то образом уничтожать. Не нанесет ли это колоссальный вред природе? Стоит также учитывать, что солнечная энергия - это непостоянный ресурс, эффективность получения которого зависит от времени суток и погоды. А это является существенным недостатком.

Но и плюсы, конечно, есть. Солнечную энергию можно добывать практически в любой точке Земли, а оборудование для ее получения и преобразования может быть настолько маленьким, что поместится на тыльной стороне смартфона. Что еще немаловажно, это возобновляемый ресурс, то есть количество солнечной энергии будет оставаться неизменным еще как минимум тысячи лет.

Перспективы

Развитие технологий в области солнечной энергетики должно привести к снижению затрат на создание элементов. Уже сейчас появляются стеклянные панели, которые могут быть установлены на окнах. Развитие нанотехнологий позволило изобрести краску, которая будет напыляться на солнечные батареи и сможет заменить кремниевый слой. Если стоимость солнечной энергии действительно снизится в несколько раз, ее популярность также вырастет многократно.

Создание маленьких панелей для индивидуального применения позволит людям в любых условиях использовать солнечную энергию - дома, в машине или даже за городом. Благодаря их распространению снизится нагрузка на централизованные электросети, поскольку люди смогут самостоятельно зарядить мелкую электронику.

Специалисты компании Shell полагают, что к 2040 году около половины энергии в мире будет создаваться за счет возобновляемых ресурсов. Уже сейчас в Германии потребление солнечной энергии активно растет, а мощность батарей составляет более 35 Гигаватт. Япония также активно развивает эту отрасль. Две эти страны - лидеры потребления солнечной энергии в мире. Вероятно, скоро к ним присоединятся и Соединенные Штаты.

Другие альтернативные источники энергии

Ученые не перестают ломать голову над тем, что еще можно использовать для получения электричества или тепла. Приведем примеры наиболее перспективных альтернативных источников энергии.

Ветряки сейчас можно встретить практически в любой стране. Даже на улицах многих российских городов устанавливают фонари, которые сами обеспечивают себя электричеством за счет энергии ветра. Наверняка их себестоимость выше средней, но зато со временем они эту разницу возместят.

Достаточно давно была придумана технология, позволяющая получать энергию, используя разницу температур воды на поверхности океана и на глубине. Китай активно собирается развивать это направление. В ближайшие годы у берегов Поднебесной собираются построить крупнейшую электростанцию, работающую по этой технологии. Существуют и другие способы использования моря. Например, в Австралии планируют создать электростанцию, генерирующую энергию из силы течений.

Есть и многие другие или тепла. Но на фоне многих других вариантов солнечная энергия - это действительно перспективное направление развития науки.

Солнце – это звезда, внутри которой, в непрерывном режиме, происходят термоядерные реакции. Результатом происходящих процессов, с поверхности солнца выделяется колоссальное количество энергии, часть которой нагревает атмосферу нашей планеты.

Солнечная энергия — это источник жизни на планете Земля. Наша планета, и все живые организмы, существующие на ней, получает энергию солнца в виде солнечного света и тепла.

Солнечная энергия является источником возобновляемой и экологически чистой энергии.

Солнечная энергия как альтернативный источник энергии

Способы преобразования энергии солнца для получения различных видов энергии, используемой человеком, можно разделить по видам получаемой энергии и способам ее получения, это:

Преобразование в электрическую энергию

Путем применения фотоэлектрических элементов

Фотоэлектрические элементы используются для изготовления солнечных панелей, которые служат приемниками солнечной энергии в системах солнечных электрических станций. Принцип работы основан на получении разности потенциалов внутри фотоэлемента при попадании на него солнечного света.

Панели различаются по структуре (поликристаллические, монокристаллические, с напылением кремния), габаритным размерам и мощности.

Путем применения термоэлектрических генераторов.

  • Термоэлектрический генератор – это техническое устройство, позволяющее получать электрическую энергию из тепловой энергии. Принцип действия основан на преобразовании энергии получаемой из-за разности температур на разных частях элементов конструкции (термоэлектродвижущая сила).

Преобразование в тепловую энергию

Путем использования коллекторов различных типов и конструкций.

  • Вакуумные коллекторы — трубчатого вида и в виде плоских коллекторов.

Принцип действия — под воздействием солнечных лучей, нагревается специальная жидкость, которая при достижении определённых параметров, начинает испаряться, после чего пар передает свою энергию теплоносителю. Отдав тепловую энергию пар конденсируется и процесс повторяется.

  • Плоские коллекторы – представляют из себя каркас с теплоизоляцией и абсорбер покрытые стеклом, с патрубками для входа и выхода теплоносителя.

Принцип действия — потоки солнечного света попадают на абсорбер и нагревают его, тепло с абсорбера переходит теплоносителю.
Путем использования гелиотермальных установок.

Принцип действия основан на нагревании поверхности способной поглощать солнечные лучи. Солнечные лучи фокусируются и посредством устройства линз концентрируются, после чего направляются на принимающее устройство, где энергия солнца передается для накопления или передачи потребителю посредством теплоносителя.

Распространение в России

Солнечная энергетика получает все более широкое распространение в разных странах и на разных континентах. Россия не является исключением из этой тенденции. Причиной более широкого распространения в последние годы стало:

  • Развитие новых технологий, позволившее снизить стоимость оборудования;
  • Желание людей иметь независимый источник энергии;
  • Чистота производства получаемой энергии («зеленая энергетика»);
  • Возобновляемый источник энергии.

Потенциалом для развития солнечной энергетики обладают южные районы нашей страны – республики Кавказа, Краснодарский и Ставропольский край, южные районы Сибири и Дальнего Востока.
Районы различаются по инсоляции в течение суток и времени года, так для разных регионов поток солнечной радиации, в летний период, составляет:

По состоянию на начало 2017 года мощность работающих солнечных электростанций на территории России составляет 0,03% от мощности электростанции энергетической системы нашей страны. В цифрах – это составляет 75,2 МВт.

Солнечные электростанции работают в

  • Оренбургской области:
    «Сакмарская им. А. А. Влазнева», установленной мощностью 25 МВт;
    «Переволоцкая», установленной мощностью 5,0 МВт.
  • Республике Башкортостан:
    «Бурибаевская», установленной мощностью 20,0 МВт;
    «Бугульчанская», установленной мощностью 15,0 МВт.
  • Республике Алтай:
    «Кош-Агачская», установленной мощностью 10,0 МВт;
    «Усть-Канская», установленной мощностью 5,0 МВт.
  • Республике Хакасия:
    «Абаканская», установленной мощностью 5,2 МВт.
  • Белгородской области:
    «АльтЭнерго», установленной мощностью 0,1 МВт.
  • В Республике Крым , независимо от Единой энергетической системы страны, работает 13 солнечных электрических станций, общей мощностью 289,5 МВт.
  • Также, вне системы работает станция в Республике Саха-Якутия (1,0 МВт) и в Забайкальском крае (0,12 МВт).

В стадии разработки проекта и строительства находятся электростанции

  • В Алтайском крае , 2 станции, общей проектируемой мощностью 20,0 МВт, запуск в работу планируется в 2019 году.
  • В Астраханской области , 6 станций, общей проектируемой мощностью 90,0 МВт, запуск в работу планируется в 2017 году.
  • В Волгоградской области , 6 станций, общей проектируемой мощностью 100,0 МВт, запуск в работу планируется в 2017 и 2018 году.
  • В Забайкальском крае , 3 станции, общей проектируемой мощностью 40,0 МВт, запуск в работу планируется в 2017 и 2018 году.
  • В Иркутской области , 1 станция, проектируемой мощностью 15,0 МВт, запуск в работу планируется в 2018 году.
  • В Липецкой области , 3 станции, общей проектируемой мощностью 45,0 МВт, запуск в работу планируется в 2017 году.
  • В Омской области , 2 станции, проектируемой мощностью 40,0 МВт, запуск в работу планируется в 2017 и 2019 году.
  • В Оренбургской области , 7 станция, проектированной мощностью 260,0 МВт, запуск в работу планируется в 2017-2019 годах.
  • В Республике Башкортостан , 3 станции, проектируемой мощностью 29,0 МВт, запуск в работу планируется в 2017 и 2018 году.
  • В Республике Бурятия , 5 станции, проектируемой мощностью 70,0 МВт, запуск в работу планируется в 2017 и 2018 году.
  • В Республике Дагестан , 2 станции, проектируемой мощностью 10,0 МВт, запуск в работу планируется в 2017 году.
  • В Республике Калмыкия, 4 станции, проектируемой мощностью 70,0 МВт, запуск в работу планируется в 2017 и 2019 году.
  • В Самарской области , 1 станция, проектируемой мощностью 75,0 МВт, запуск в работу планируется в 2018 году.
  • В Саратовской области , 3 станции, проектируемой мощностью 40,0 МВт, запуск в работу планируется в 2017 и 2018 году.
  • В Ставропольском крае , 4 станции, проектируемой мощностью 115,0 МВт, запуск в работу планируется в 2017-2019 годы.
  • В Челябинской области , 4 станции, проектируемой мощностью 60,0 МВт, запуск в работу планируется в 2017 и 2018 году.

Общая проектируемая мощность солнечных электрических станций, находящихся в стадии разработки и строительства, составляет – 1079,0 МВт.

Термоэлектрические генераторы, гелиоколлекторы и гелиотермальные установки также широко применяются на промышленных предприятиях и в повседневной жизни. Вариант и способ использования выбирает каждый для себя сам.

Количество технических устройств, использующих энергию солнца для выработки электрической и тепловой энергий, а также количество строящихся солнечных электрических станций, их мощность, говорят сами за себя — в России альтернативным источникам энергии быть и развиваться.

Пригодна ли для обычного дома

  • Для бытового использования гелиоэнергетика — перспективный вид энергетики.
  • В качестве источника электрической энергии, для жилых домов, используют солнечные электрические станции, которые выпускают промышленные предприятия в России и за ее пределами. Установки выпускаются различной мощности и комплектации.
  • Использование теплового насоса — обеспечит жилой дом горячей водой, подогреет воду в бассейне, нагреет теплоноситель в системе отопления или воздух внутри помещений.
  • Гелиоколлекторы — можно использовать в системах отопления домов и горячего водоснабжения. Более эффективны, в этом случае, вакуумные трубчатые коллекторы.

Плюсы и минусы

К достоинствам солнечной энергетики относятся :

  • Экологическая безопасность установок;
  • Неисчерпаемость источника энергии в далекой перспективе;
  • Низкая себестоимость получаемой энергии;
  • Доступность производства энергии;
  • Хорошие перспективы развития отрасли, обусловленные развитием технологий и производством новых материалов с улучшенными характеристиками.

Недостатками являются :

  • Прямая зависимость количества вырабатываемой энергии от погодные условия, времени суток и времени года;
  • Сезонность работы, которую определяет географическое расположение;
  • Низкий КПД;
  • Высокая стоимость оборудования.

Перспективы

Перспективы развития данной отрасли энергетики обусловлены положительными и отрицательными свойствами присущим гелиоустановкам. Если с достоинствами все понятно, то с недостатками предстоит работать инженерам и разработчикам оборудования и материалов.
Факторами, вызывающими здоровый оптимизм, по развитию альтернативных источников энергии, являются:

  1. Запасы традиционных источников энергии постоянно сокращаются, что обуславливает рост их стоимости.
  2. Технический прогресс постоянно идет, появляются новые материалы и технологии, и что, в свою очередь, приводит к уменьшению стоимости оборудования и повышению КПД установок.
  3. Политика государства в энергетической области направлена на развитие альтернативной энергетики, о чем были приняты постановления правительства и соответствующие программы, как то:

Россия – большая страна, поэтому для успешного развития всех отраслей промышленности и комфортного проживания людей во всех регионах, необходимо наличие запасов различных видов энергии. В связи с этим альтернативные источники все более прочно входят в общую систему энергоснабжения страны, обеспечивая самые отдаленные города и поселки источниками электричества и тепла.

Энергия солнца – это всего лишь поток фотонов. И вместе с тем это – один из основополагающих факторов, обеспечивающих само существование жизни в нашей биосфере. Поэтому вполне естественно, что солнечный свет активно используется человеком не только в климатическом аспекте, но и в качестве альтернативного источника энергии.

Где используется солнечная энергия

Сфера применения энергии солнца очень обширна, и с каждым годом она становится все больше. Так, еще совсем недавно дачный душ с солнечным нагревателем воспринимался как нечто необыкновенное, а возможность использования солнечного света для домашних электросетей и вовсе казалась фантастикой. Сегодня же никого не удивишь не только автономной гелиостанцией, но и мобильными зарядками на солнечных батареях и даже мелкой техникой (например, часами), работающей на фотогальваническом эффекте.

Вообще же использование солнечной энергии очень востребовано в таких областях, как:

  • Сельское хозяйство;
  • Энергоснабжение санаториев и пансионатов;
  • Космическая отрасль;
  • Природоохранная деятельность и экотуризм;
  • Электрификация отдаленных и сложнодоступных регионов;
  • Уличное, садовое и декоративное освещение;
  • Сфера ЖКХ (ГВС, придомовое освещение);
  • Мобильная техника (гаджеты и зарядные модули на солнечных батареях).

Ранее энергия солнца использовалась главным образом в космической отрасли (энергоснабжение спутников, станций и т.д.) и в промышленности, но со временем альтернативную энергетику начали активно развивать и в быту. Одними из первых объектов, оснащенных солнечными установками, стали южные пансионаты и санатории, особенно расположенные в уединенных районах.

Солнечные установки и их преимущества

Успешное применение первых гелиомодулей доказало, что энергия солнечных лучей обладает массой преимуществ перед традиционными источниками. Ранее главными достоинствами гелиоустановок называли лишь экологичность и неисчерпаемость (а также бесплатность) солнечного света.

Но на самом деле список достоинств гораздо шире:

  • Автономность, так как не требуется никаких внешних энергокоммуникаций;
  • Стабильность подачи питания, в силу специфики солнечный ток не подвержен скачкам напряжения;
  • Экономичность, так как средства тратятся только один раз, при монтаже установки;
  • Солидный ресурс эксплуатации (свыше 20 лет);
  • Всесезонное использование, солнечные установки эффективно работают даже в морозы и облачную погоду (с незначительным снижением КПД);
  • Простота и удобство сервисного обслуживания, так как требуется только изредка очищать лицевые стороны панелей от загрязнений.

Единственным недостатком можно назвать только зависимость от солнца и тот факт, что такие установки не работают ночью. Но эта проблема решается за счет подключения специальных аккумуляторов, в которых накапливается выработанная за день энергия солнечного света.

Фотоэнергия

Фотоэнергия – это один из двух способов использования излучения солнца. Это постоянный ток, вырабатываемый под действием солнечных лучей. Происходит такое преобразование в так называемых фотоячейках, которые, по сути, представляют собой двухслойную структуру из двух полупроводников разного типа. Нижний полупроводник относится к p-типу (с недостатком электронов), верхний – к n-типу с избытком электронов.

Электроны n-проводника поглощают энергию падающих на них лучей солнца и покидают свои орбиты, причем энергетического импульса достаточно для того, чтобы они перешли в зону p-проводника. При этом образуется направленный электронный поток, называемый фототоком. Иными словами, вся структура работает как своеобразные электроды, в которых под воздействием солнца генерируется электроэнергия.

Для производства таких фотоячеек применяют кремний. Объясняется это тем, что кремний во-первых, широко распространен, а во-вторых, его промышленная обработка не требует больших затрат.

Фотоячейки из кремния бывают:

  • Монокристаллическими. Изготавливаются из монокристаллов и отличаются равномерной структурой с чуть более высоким КПД (примерно 20%), но при этом дороже стоят.
  • Поликристаллическими. Имеют неравномерную структуру за счет использования поликристаллов и несколько более низкий КПД (15-18%), но гораздо дешевле моновариантов.
  • Тонкопленочными. Изготавливаются методом напыления аморфного кремния на тонкопленочную подложку. Отличаются гибкой структурой и самой низкой себестоимостью производства, однако имеют вдвое больше габариты по сравнению с кристаллическими аналогами той же мощности.

Сферы применения каждого типа ячеек весьма обширны и определяются их эксплуатационными особенностями.

Солнечные коллекторы

Гелиоколлекторы также используются как преобразователи солнечной энергии, но принцип их действия совершенно иной. Они преобразуют падающий свет не в электрическую, а в тепловую энергию за счет нагрева жидкого теплоносителя. Применяют их либо для ГВС, либо для отопления домов. Главный элемент любого коллектора – абсорбер, он же – теплопоглотитель. Абсорбер представляет собой либо плоскую пластину, либо трубчатую вакуумированную систему, внутри которой циркулирует теплоноситель (это или простая вода, или антифриз). Причем абсорбер обязательно красится в черный цвет специальной краской для увеличения коэффициентов поглощения.

Именно по типу абсорберов коллекторы делят на плоские и вакуумные. У плоских теплопоглотитель выполняют в виде металлической пластины, к которой снизу припаян металлический же змеевик с теплоносителем. У вакуумных абсорбер изготавливается их нескольких соединенных между собой на концах стеклянных трубок. Трубки делают двойными, между стенками создают вакуум, а внутри помещают стержень с теплоносителем. Все стержни сообщаются между собой посредством специальных соединителей в местах стыков труб.

Абсорберы обоих типов помещают в прочный легкий корпус (обычно – из алюминия или ударопрочных пластиков) и надежно теплоизолируют от стенок. Лицевая же сторона корпуса закрывается прозрачным ударостойким стеклом с максимальной проницаемостью для фотонов. Это обеспечивает лучшее поглощение солнечной энергии.

Особенности функционирования

Принцип работы обоих типов коллекторов аналогичен. Нагреваясь в коллекторе до высоких температур, теплоноситель проходит по соединительным шлангам в теплообменный бак, который наполнен водой. Через бак он проходит по змеевидной трубке, отдавая свое тепло воде. Остывший теплоноситель выходит из бака и подается обратно в коллектор. По сути, это – своеобразный «солнечный» кипятильник», только вместо нагревательной спирали используется змеевик в баке, а вместо электросети – солнечный свет.

Конструктивные различия определяют и разницу в применении вакуумных и плоских коллекторов. Использование солнечного излучения при помощи вакуумных моделей возможно круглый год, в том числе и зимой, и в межсезонье. Плоские же варианты лучше работают в летний период. Однако они дешевле и проще вакуумных, поэтому оптимально подходят именно для сезонных целей.

Солнечная энергия в городах (экодома)

Гелиоэнергетика активно применяется не только для частных домов, но и для городских строений. Как человек использует солнечную энергию в мегаполисах, догадаться не сложно. Она также применяется для обогрева и ГВС зданий, причем нередко – целых кварталов.

В последние годы активно развиваются и воплощаются концепции экодомов, полностью работающих на альтернативных источниках энергии. В них используются комбинированные системы, обеспечивающие эффективное получение солнечной, ветровой и тепловой энергии земли. Нередко такие дома не только целиком покрывают свои энергетические нужды, но и передают излишки в городские сети. Причем совсем недавно проекты таких экозданий появились и в России.

Гелиостанции и их виды

В южных регионах с высокой инсоляцией строят не просто отдельные гелиоустановки, но целые станции, вырабатывающие энергию в промышленных масштабах. Количество солнечной энергии, производимое ими, весьма велико и многие страны с подходящим климатом уже начали постепенный перевод всей энергосистемы на такой альтернативный вариант. По принципу работу станции делят на фототермические и фотоэлектрические. Первые работают по методу коллекторов и подают в дома разогретую воду для ГВС, вторые же вырабатывают непосредственно электричество.

Существует несколько видов гелиостанций:

  • Башенные. Позволяют получать сверхнагретый водяной пар, подаваемый на генераторы. В центре станции базируется башня с водным резервуаром, вокруг нее размещают гелиостаты (зеркальные), которые фокусируют лучи на резервуаре. Это достаточно эффективные станции, главный их недостаток – сложность точного позиционирования зеркал.
  • Тарельчатые. Состоят из приемника гелиоэнергии и отражателя. Отражатель – тарелкообразное зеркало, концентрирующее излучение на приемнике. Такие концентраторы солнечной энергии располагаются на небольшом удалении от приемника, а их количество определяется требуемой мощностью установки.
  • Параболические. Трубки с теплоносителем (обычно – маслом) помещают в фокусе длинного параболического зеркала. Разогретое масло отдает тепло воде, та вскипает и вращает генераторы.
  • Аэростатные. По сути, это самые эффективные и мобильные гелиостанции на Земле. Их главный элемент – аэростат с фотоэлектрическим слоем, наполненный водяным паром. Он поднимается высоко в атмосферу (обычно выше облаков). Разогретый пар из шара по гибкому паропроводу подается на турбину, на выходе из нее конденсируется и вода насосом поднимается обратно в шар. Попав в шар, вода испаряется и цикл продолжается.
  • На фотобатареях. Это уже привычные всем установки на солнечных батареях, которые используются для частных домов. Они обеспечивают получение электроэнергии и подогрев воды в нужных объемах.

Сегодня разного рода гелиостанции (в том числе и комбинированные, объединяющие несколько типов) играют все большую роль в энерговыработке многих стран. А некоторые государства перестраивают свою энергетику таким образом, чтобы через несколько лет вообще практически полностью перейти на альтернативные системы.

Солнце - один из самых безопасных и неисчерпаемых источников энергии. Грамотное использование ее - вопрос экологической безопасности и экономической эффективности деятельности любой отрасли или страны. Такой источник энергии, как солнце, обладает рядом значительных преимуществ перед другими, популярными . Оно не погаснет и может подарить человеку огромное количество киловатт часов, оно экологично и экономично, Солнце доступно для любого уголка Земли и способно сохранить природные ресурсы, истощаемые с каждым вырубленным деревом и добытым килограммом угля.

Солнечная энергия восстановима, то есть может существовать без вмешательства человека в природу, в отличие от атомной энергии, солнце не сможет причинить вреда окружающей среде и сохраняет чистоту лесов и рек в первозданном виде.

Примеры использования

Возьмите в руки обычный на солнечных батареях - это самый элементарный пример использования солнечной энергии и превращения ее в электрическую, темные поверхности способны эффективно поглощать лучи и использовать энергию светила, преобразуя ее в тепловую. Специальные технологии, являющиеся передовыми достижениями в науке и технике, давно используются для сбора и хранения солнечной энергии, которая сумела успешно заменить бензин в автомобилях, отапливать и освещать дома.

Использование географических особенностей расположения тех или иных построек вкупе с современными материалами позволяет человечеству полностью перейти на энергию солнечного света при этом все современные средства связи: телевидение, интернет и прочие удобства будут продолжать функционировать в обычном режиме. Такие здания отличаются экологической чистотой и высокой экономичностью.

Специальные элементы, преобразующие солнечную энергию, успешно используются в космических технологиях, современные спутники и космические станции оборудуются специальными батареями, питающимися от лучей общего светила. Солнечная энергия весьма удобна в использовании и доступна даже в диких и наиболее удаленных уголках земного шара, где проведение коммуникаций и линий электропередач весьма затруднительно или невозможно.

Использование электрической энергии в чистом виде не всегда удобно, именно поэтому многие системы используют смешанные источники электричества, сочетая Солнце и традиционные виды энергии.