Параллельное подключение люминесцентных ламп к балласту. Что такое электронный балласт для люминесцентных ламп и его виды

Люминесцентная лампа (ЛЛ) – это источник света из стеклянной герметичной колбы, внутри которой создается электрический электродный разряд, протекающий в газовой среде. На ее внутренней поверхности находится фосфорсодержащий слой (люминофор). Внутри лампы находится инертный газ и 1% паров ртути. При действии на них электрического разряда они излучают невидимый визуально ультрафиолетовый свет, который заставляет светиться люминофор.

Балластники для люминесцентных ламп

Если в помещении разобьется даже одна люминесцентная лампа, пары ртути превысят допустимые показатели в 10 раз. Ее вредное влияние сохраняется в течение 1-2 месяцев.

Применение

Электропроводная газовая среда внутри ламп дневного света обладает отрицательным сопротивлением, проявляющимся в том, что с увеличением тока напряжение между электродами снижается.


Схема работы люминесцентной лампы

Поэтому в схему подключается ограничитель тока LL1 – балластник, как видно из рисунка. Устройство также служит для создания кратковременного повышенного напряжения зажигания ламп, которого недостаточно в действующей сети. Еще его называют дросселем.

Пускорегулирующее устройство также содержит небольшую лампу тлеющего разряда E1 – стартер. Внутри нее расположены 2 электрода, один из которых подвижный, он выполнен из биметаллической пластины.

В исходном состоянии электроды разомкнуты. При подаче на схему напряжения сети замыканием контакта SA1 в начальный момент через лампу дневного света ток не проходит, а внутри стартера между электродами образуется тлеющий разряд. От него нагреваются электроды, и биметаллическая пластина изгибается, замыкая контакт внутри стартера. В результате ток через балласт LL1 увеличивается и нагревает электроды люминесцентной лампы.

После замыкания разряд внутри стартера E1 прекращается, и электроды начинают остывать. При этом происходит их размыкание, и в результате самоиндукции дроссель создает значительный импульс напряжения, зажигающий ЛЛ. При этом через нее начинает проходить ток, равный по величине номинальному, который затем уменьшается в 2 раза из-за падения напряжения на дросселе. Этого тока недостаточно, чтобы в стартере появился тлеющий разряд, поэтому его электроды остаются разомкнутыми, пока горит лампа дневного света. Конденсаторы С1 и С2 позволяют уменьшить реактивные нагрузки и увеличить кпд.

Электромагнитный дроссель

Балласт ограничивает протекающий ток. Часть мощности нагревает устройство, что приводит к потерям энергии. По уровням потерь балласт для ламп может быть следующим:

  • D – обычный;
  • C – пониженный;
  • B – особо низкий.

При включении балласта в сеть переменное напряжение опережает ток по фазе. В его обозначении всегда указывается косинус угла этого отставания, называемый коэффициентом мощности. Чем меньше его величина, тем больше потребляется реактивная энергия, являющаяся дополнительной нагрузкой. Чтобы увеличить коэффициент мощности до величины 0.85, параллельно сети подключается конденсатор с емкостью 3-5 мкф.

Любой электромагнитный дроссель создает шум. В зависимости от того, насколько его можно уменьшить, выпускают балласты с нормальным (Н), пониженным (П), очень низким (С, А) уровнями шума.

Мощности ламп и балластов должны подбираться в соответствии друг с другом (от 4 до 80 Вт), иначе светильник преждевременно выйдет из строя. Они поставляются в комплекте, но можно подобрать своими руками.

Классическое устройство запуска из электромагнитного балласта и пускателя (ЭмПРА) имеет следующие достоинства:

  • относительная простота;
  • высокая надежность;
  • небольшая цена;
  • не требуется ремонт, поскольку даже своими руками он обойдется дороже нежели, чем купить новый блок.

Кроме того, ему присуща целая масса недостатков:

  • длительный запуск;
  • потери энергии (до 15 %);
  • шум при работе дросселя;
  • большие габариты и вес;
  • неудовлетворительный запуск при низкой температуре среды;
  • моргание лампы.

Недостатки дросселей привели к необходимости создать новое устройство. Электронный балласт – это инновационное решение, повышающее качество работы ЛЛ и делающее ее долговечной. Схема ЭПРА (электронное пускорегулирующее устройство) – это единый электронный блок, формирующий последовательность изменения напряжения для зажигания.


Блок-схема запуска ламп с помощью ЭПРА

Преимущества электронных схем следующие:

  • запуск может быть моментальным и с задержкой;
  • нет необходимости в стартере для запуска;
  • за счет высокой частоты отсутствует «моргание», а светоотдача выше;
  • конструкция легче и компактней;
  • долговечность за счет оптимальных режимов пуска и работы.

Внешне ЭПРА выглядит, как показано на рисунке ниже.


ЭПРА для люминесцентных ламп

Недостатком ЭПРА является высокая цена из-за сложности схемы.

Запуск ламп

Электроды лампы разогреваются, после чего на них подается высокое напряжение через пускорегулирующее устройство. Его частота составляет 20-60 кГц, что дает возможность исключить мерцание и повысить кпд. В зависимости от схемы запуск может быть мгновенным или плавным – с нарастанием яркости до рабочей.

При холодном пуске период эксплуатации люминесцентных ламп значительно снижается.

К процессу разогрева электродов добавляется колебательный контур в цепи питания лампы, входящий в электрический резонанс перед разрядом. При этом значительно повышается напряжение, более интенсивно подогреваются катоды и в результате зажигание происходит легко. Как только начинается разряд в лампе, колебательный контур сразу выходит из резонанса и устанавливается рабочее напряжение.

У дешевых ЭПРА или собранных своими руками принцип действия аналогичен варианту с дросселем: зажигание ламп производится большим напряжением, а удерживание разряда – малым.


Схема электронного балласта

Как и на всех схемах ЭПРА, выпрямление напряжения производится диодами VD4-VD7, которое затем фильтруется конденсатором C1. Емкость фильтра выбирается из расчета 1 мкФ на 1 Вт мощности ламп. При меньших номиналах конденсатора свечение будет более тусклым.

Как только происходит подключение к сети, сразу начинает заряжаться конденсатор С4. При достижении 30 В пробивается динистор CD1 и импульсом напряжения открывается транзистор T2, затем начинает работать полумостовой автогенератор из транзисторов T1, T2 и трансформатора TR1 c двумя противофазно включенными первичными и одной вторичной обмотками. Резонансная частота последовательного контура из конденсаторов С2, С3, дросселя L1 и генератора близки по величине (45-50 кГц). Когда напряжение на конденсаторе С3 поднимется до величины пуска, лампа зажигается. При этом снижаются частота генератора и напряжения, а дроссель ограничивает ток. Из-за высокой частоты его габариты небольшие.

Неисправности и ремонт

Сгоревшие детали в схеме часто видно. Как проверить электронный балласт? Чаще всего из строя выходят транзисторы. Перегоревшую деталь можно обнаружить визуально. Когда производится ремонт своими руками, рекомендуется проверить парный с ним транзистор и расположенные рядом резисторы. По ним не всегда видно сгоревшие. Вздутый конденсатор обязательно меняется. Если сгоревших деталей несколько, ремонт балласта не делается.

Иногда после выключения ЭПРА лампа продолжает слабо мерцать. Одной из причин может быть наличие потенциала на входе при отключении нуля. Схему надо проверить и сделать подсоединения своими руками, чтобы выключатель был установлен на фазу. Возможно, что остается заряд на конденсаторе фильтра. Тогда к нему следует подключить параллельно сопротивление для разрядки на 200-300 кОм.

Из-за скачков напряжения в сети часто необходим ремонт светильников с электронным балластом. При неустойчивом электроснабжении лучше применять электромагнитный дроссель.

Компактная лампа (КЛЛ) содержит ЭПРА, встроенный в цоколь. Ремонт ЛЛ низкой цены и качества производится по следующим причинам: сгорание нити накала, пробой транзисторов или резонансного конденсатора. Если сгорела спираль, ремонт своими руками ненадолго продлит срок службы и лампу лучше заменить. Ремонт ЛЛ, у которых обгорел слой люминофора (почернение колбы в области электродов), также производить нецелесообразно. При этом исправный балласт можно использовать как запасной.


Обгорание люминофора на люминесцентной лампе

Ремонт электронного балласта долго не потребуется, если модернизировать КЛЛ, установив своими руками NTS-термистор (5-15 Ом) последовательно с резонансным конденсатором. Деталь ограничивает пусковой ток и надолго защищает нити накала. Целесообразно также сделать вентиляционные отверстия в цоколе.


Устройство вентиляции своими руками для отвода тепла от балласта

Аккуратно сверлятся отверстия рядом с трубкой для ее лучшего охлаждения, а также около металлической части цоколя, чтобы отвести тепло от деталей балласта. Подобный ремонт возможен только в сухих помещениях. Посередине можно сделать третий ряд отверстий сверлом большего диаметра.

Ремонт с установкой термистора производится с выпаиванием проводника на нижней площадке с припоем. Затем отгибается выпуклая часть цоколя от стеклянной колбы и освобождается второй провод. После цоколь снимается и обеспечивается доступ к печатной плате. После того как ремонт будет закончен, цоколь устанавливается в обратной последовательности.

Изготовить своими руками

Трубчатые ЛЛ длиной 1200 мм недорого стоят и могут освещать большие площади. Светильник можно изготовить своими руками, например, из 2 ламп по 36 Вт.

  1. Корпус – основание прямоугольной формы из негорючего материала. Можно использовать бывший в употреблении светильник, для которого ремонт уже не требуется.
  2. ЭПРА подбирается под мощность светильников.
  3. На каждую из ламп понадобится по 2 патрона G13, многожильный провод и крепеж.
  4. Патроны для ламп крепятся на корпусе после выбора расстояния между ними.
  5. ЭПРА устанавливается в зоне минимального нагрева от ламп (обычно ближе к центру) и подключается к патронам. Каждый блок выпускается со схемой подключений на корпусе.
  6. Светильник крепится на стене или потолке с подключением к сети питания на 220 В через выключатель.
  7. Для защиты ламп желательно применять прозрачный колпак.


Самодельный светильник

Замена. Видео

Как заменить электронный балласт в светильнике, наглядно расскажет это видео.

ЛЛ следует питать током высокой частоты, для чего хорошо подходит электронный балластник. Они содержат мало паров ртути, здесь требуется нормированный по времени и току подогрев нитей накала для выхода в рабочий режим.

Экономные люминесцентные лампы способны работать только с электронными балластами. Предназначены данные устройства для выпрямления тока. Информации про электронный балласт (схема, ремонт и подключение) имеется очень много. Однако в первую очередь важно изучить устройство прибора.

Модели диодного типа

Модели диодного типа на сегодняшний день считаются бюджетными. В данном случае трансформаторы используются лишь понижающего типа. Некоторые производители транзисторы устанавливают открытого типа. За счет этого процесс понижения частоты в цепи происходит не очень резко. Для стабилизации выходного напряжения применяются два конденсатора. Если рассматривать современные модели балластов, то там имеются динисторы операционного типа. Ранее их заменяли обычными преобразователями.

Двухконтактные модели

Данного типа схема электронного балласта для отличается от прочих моделей тем, что в ней используется регулятор. Таким образом, пользователь способен настраивать параметр выходного напряжения. Трансформаторы используются в устройствах самые различные. Если рассматривать распространенные модели, то там установлены понижающие аналоги. Однако однофазовые конфигурации не уступают им по параметрам.

Всего конденсаторов в цепи у моделей предусмотрено два. Также двухконтактные схемы электронных балластов включают в себя дроссель, который устанавливается за выходными каналами. Транзисторы для моделей подходят лишь емкостные. На рынке они представлены как постоянного, так и переменного типа. Предохранители в устройствах используются редко. Однако если в цепи установлен тиристор для выпрямления тока, то без него не обойтись.


Схема балласта "Эпра" 18 Вт

Данная схема электронного балласта для люминесцентной лампы включает в себя а также две пары конденсаторов. Транзистор для модели предусмотрен лишь один. Отрицательное сопротивление он максимум способен выдерживать на уровне 33 Ом. Для устройств данного типа это считается нормальным. Также схема электронного балласта 18 Вт включает в себя дроссель, который расположен над трансформатором. Динистор для преобразования тока применяется модульного типа. Понижение тактовой частоты происходит при помощи тетрода. Находится данный элемент возле дросселя.

Балласт "Эпра" 2х18 Вт

Указанный электронный балласт 2х18 (схема показана ниже) состоит из выходных триодов, а также понижающего трансформатора. Если говорить про транзистор, то он в данном случае предусмотрен открытого типа. Всего конденсаторов в цепи имеется два. Еще у схемы электронных балластов "Эпра" 18 Вт есть дроссель, который располагается под трансформатором.

Конденсаторы при этом стандартно устанавливаются возле каналов. Процесс преобразования осуществляется через понижение тактовой частоты устройства. Стабильность напряжения в данном случае обеспечивается благодаря качественному динистору. Всего каналов у модели имеется два.


Схема балласта "Эпра" 4х18 Вт

Этот электронный балласт 4х18 (схема показана ниже) включает в себя конденсаторы инвертирующего типа. Емкость их составляет ровно 5 пФ. В данном случае параметр отрицательного сопротивления в электронных балластах доходит до 40 Ом. Также важно упомянуть о том, что дроссель в представленной конфигурации расположен под динистором. Транзистор у этой модели имеется один. Трансформатор для выпрямления тока применяется понижающего типа. Перегрузки он способен от сети выдерживать большие. Однако предохранитель в цепи все-таки установлен.


Балласт Navigator

Электронный балласт Navigator (схема показана ниже) включает в себя однопереходный транзистор. Также отличие этой модели кроется в наличии специального регулятора. С его помощью пользователь сможет настраивать параметр выходного напряжения. Если говорить про трансформатор, то он в цепи предусмотрен понижающего типа. Расположен он возле дросселя и фиксируется на пластине. Резистор для этой модели подобран емкостного типа.

В данном случае конденсаторов имеется два. Первый из них расположен возле трансформатора. Предельная емкость его равняется 5 пФ. Второй конденсатор в цепи располагается под транзистором. Емкость его равняется целых 7 пФ, а отрицательное сопротивление максимум он может выдерживать на уровне 40 Ом. Предохранитель в данных электронных балластах не используется.


Схема электронного балласта на транзисторах EN13003A

Схема электронного балласта для люминесцентной лампы с транзисторами EN13003A является на сегодняшний день довольно сильно распространенной. Выпускаются модели, как правило, без регуляторов и относятся к классу бюджетных приборов. Однако прослужить устройства способны долго, и предохранители у них имеются. Если говорить про трансформаторы, то они подходят только понижающего типа.

Устанавливается транзистор в цепи возле дросселя. Система защиты у таких моделей в основном используется стандартная. Контакты приборов защищены динисторами. Также схема электронного балласта на 13003 включает в себя конденсаторы, которые часто устанавливаются с емкостью около 5 пФ.

Использование понижающих трансформаторов

Схема электронного балласта для люминесцентной лампы с понижающими трансформаторами часто включает в себя регуляторы напряжения. В данном случае транзисторы используются, как правило, открытого типа. Многими специалистами они ценятся за высокую проводимость тока. Однако для нормальной работы устройства очень важен качественный динистор.

Для понижающих трансформаторов часто используют операционные аналоги. В первую очередь они ценятся за свою компактность, а для электронных балластов это является существенным преимуществом. Дополнительно они отличаются пониженной чувствительностью, и небольшие сбои в сети для них нестрашны.

Применение векторных транзисторов

Векторные транзисторы в электронных балластах применяются очень редко. Однако в современных моделях они все-таки встречаются. Если говорить про характеристики компонентов, то важно отметить, что отрицательное сопротивление они способы держать на уровне 40 Ом. Однако с перегрузками они справляются довольно плохо. В данном случае большую роль играет параметр выходного напряжения.

Если говорить про транзисторы, то для указанных трансформаторов они подходят больше ортогонального типа. Стоят они на рынке довольно дорого, однако расход электроэнергии у моделей крайне низок. В данном случае модели с векторными трансформаторами по компактности значительно проигрывают конкурентам с понижающими конфигурациями.


Схема с интегральным котроллером

Электронный балласт для люминесцентных ламп с интегральным контроллером довольно прост. В данном случае трансформаторы применяются понижающего типа. Непосредственно конденсаторов в системе имеется два. Для понижения предельной частоты у модели имеется динистор. Транзистор используется в электронном балласте операционного типа. Отрицательное сопротивление он способен выдерживать не менее 40 Ом. Выходные триоды в моделях данного типа практически никогда не используются. Однако предохранители устанавливаются, и при сбоях в сети они помогают сильно.

Применение низкочастотных триггеров

Триггер на электронный балласт для люминесцентных ламп устанавливается в том случае, когда отрицательное сопротивление в цепи превышает 60 Ом. Нагрузку с трансформатора он снимает очень хорошо. Предохранители при этом устанавливаются очень редко. Трансформаторы для моделей этого типа используются лишь векторные. В данном случае понижающие аналоги неспособны справляться с резкими скачками предельной тактовой частоты.

Непосредственно динисторы в моделях устанавливаются возле дросселей. По компактности электронные балласты довольно сильно отличаются. В данном случае многое зависит от используемых компонентов устройства. Если говорить про модели с регуляторами, то места они требуют очень много. Также они способны работать в электронных балластах только на два конденсатора.

Модели без регуляторов очень компактны, однако транзисторы для них могут использоваться лишь ортогонального типа. Отличаются они хорошей проводимостью. Однако следует учитывать, что данные электронные балласты на рынке покупателю обойдутся недешево.

Люминесцентная лампа (ЛЛ) представляет собой стеклянную трубку, заполненную инертным газом (Ar, Ne, Kr) с добавлением небольшого количества ртути. На концах трубки имеются металлические электроды для подачи напряжения, электрическое поле которого приводит к пробою газа, возникновению тлеющего разряда и появлению электрического тока в цепи. Свечение газового разряда бледно-голубого оттенка, в видимом световом диапазоне очень слабое.

Но в результате электрического разряда большая часть энергии переходит в невидимый, ультрафиолетовый диапазон, кванты которого, попадая в фосфорсодержащие составы (люминофорные покрытия) вызывают свечение в видимой области спектра. Меняя химический состав люминофора, получают различные цвета свечения: для ламп дневного света (ЛДС) разработаны различные оттенки белого цвета, а для освещения в декоративных целях можно выбрать лампы иного цвета. Изобретение и массовый выпуск люминесцентных ламп – это шаг вперед по сравнению с малоэффективными лампами накаливания.

Для чего нужен балласт?

Ток в газовом разряде растет лавинообразно, что приводит к резкому падению сопротивления. Для того чтобы электроды люминесцентной лампы не вышли из строя от перегрева, последовательно включается дополнительная нагрузка, ограничивающая величину тока, так называемый балластник. Иногда для его обозначения употребляют термин дроссель.

Используются два вида балластников: электромагнитный и электронный. Электромагнитный балласт имеет классическую, трансформаторную комплектацию: медный провод, металлические пластины. В электронных балластниках (electronic ballast) применяются электронные компоненты: диоды, динисторы, транзисторы, микросхемы.

Для первоначального поджига (пуска) разряда в лампе в электромагнитных устройствах дополнительно используется пусковое устройство – стартер. В электронном варианте балластника эта функция реализована в рамках единой электрической схемы. Устройство получается легким, компактным и объединяется единым термином – электронный пускорегулирующий аппарат (ЭПРА). Массовое применение ЭПРА для люминесцентных ламп обусловлено следующими достоинствами:

  • эти аппараты компактны, имеют небольшой вес;
  • лампы включаются быстро, но при этом плавно;
  • отсутствие мерцания и шума от вибрации, поскольку ЭПРА работает на высокой частоте (десятки кГц) в отличие от электромагнитных, работающих от сетевого напряжения с частотой 50 Гц;
  • снижением тепловых потерь;
  • электронный балласт для люминесцентных ламп имеет значение коэффициента мощности до 0,95;
  • наличие нескольких, проверенных видов защиты, которые повышают безопасность использования и продлевают срок службы.

Схемы электронных балластов для люминесцентных ламп

ЭПРА – это электронная плата, начиненная электронными компонентами. Принципиальная схема включения (Рис. 1) и один из вариантов схемы балласта (Рис. 2) приведены на рисунках.


Люминесцентная лампа, С1 и С2 – конденсаторы


Электронные балласты могут иметь разное схемотехническое решение в зависимости от примененных комплектующих. Выпрямление напряжения производится диодами VD4–VD7 и далее фильтруется конденсатором C1. После подачи напряжения начинается зарядка конденсатора С4. При уровне 30 В пробивается динистор CD1 и открывается транзистор T2, затем включается в работу автогенератор на транзисторах T1, T2 и трансформаторе TR1. Резонансная частота последовательного контура из конденсаторов С2, С3, дросселя L1 и генератора близки по величине (45–50 кГц). Режим резонанса необходим для устойчивой работы схемы. Когда напряжение на конденсаторе С3 достигнет величины пуска, лампа зажигается. При этом снижается регулирующая частота генератора и напряжения, а дроссель ограничивает ток.



Ремонт ЭПРА


В случае отсутствия возможности быстрой замены вышедшего из строя ЭПРА можно попытаться отремонтировать балластник самостоятельно. Для этого выбираем следующую последовательность действий для устранения неисправности:

  • для начала проверяется целостность предохранителя. Эта поломка часто встречается из-за перегрузки (перенапряжения) в сети 220 вольт;
  • далее производится визуальный осмотр электронных компонентов: диодов, резисторов, транзисторов, конденсаторов, трансформаторов, дросселей;
  • в случае обнаружения характерного почернения детали или платы ремонт производится с помощью замены на исправный элемент. Как проверить своими руками неисправный диод или транзистор, имея в наличии обычный мультиметр, хорошо известно любому пользователю с техническим образованием;
  • может оказаться, что стоимость деталей для замены будет выше или сопоставима со стоимостью нового ЭПРА. В таком случае лучше не тратить время на ремонт, а подобрать близкую по параметрам замену.

ЭПРА для компактных ЛДС

Сравнительно недавно стали широко использоваться в быту люминесцентные энергосберегающие лампы, адаптированные под стандартные патроны для простых ламп накаливания – Е27, Е14, Е40. В этих устройствах электронные балласты находятся внутри патрона, поэтому ремонт этих ЭПРА теоретически возможен, но на практике проще купить новую лампу.

На фото показан пример такой лампы марки OSRAM, мощностью 21 ватт. Следует заметить, что в настоящее время позиции этой инновационной технологии постепенно занимают аналогичные лампы со светодиодными источниками. Полупроводниковая технология, непрерывно совершенствуясь, позволяет быстрыми темпами достигнуть цены на ЛДС, стоимость которых остается практически неизменной.


Люминесцентные лампы T8

Лампы T8 имеют диаметр стеклянной колбы 26 мм. Широко используемые лампы T10 и T12 имеют диаметры 31,7 и 38 мм соответственно. Для светильников обычно применяют ЛДС мощностью 18 Вт. Лампы T8 не теряют работоспособности при скачках питающего напряжения, но при понижении напряжения более чем на 10% зажигание лампы не гарантируется. Температура окружающего воздуха также влияет на надежность работы ЛДС T8. При минусовых температурах снижается световой поток, и могут происходить сбои в зажигании ламп. Лампы T8 имеют срок службы от 9 000 до 12 000 часов.

Как изготовить светильник своими руками?

Сделать простейший светильник из двух ламп можно следующим образом:

  • выбираем подходящие по цветовой температуре (оттенку белого цвета) лампы по 36 Вт;
  • изготавливаем корпус из материала, который не воспламенится. Можно задействовать корпус от старого светильника. Подбираем ЭПРА под данную мощность. На маркировке должно быть обозначение 2 х 36;
  • подбираем к лампам 4 патрона с маркировкой G13 (зазор между электродами составляет 13 мм), монтажный провод и саморезы;
  • патроны необходимо закрепить на корпусе;
  • место установки ЭПРА выбирают из соображения минимизации нагрева от работающих ламп;
  • патроны подключаются к цоколям ЛДС;
  • для предохранения ламп от механического воздействия желательно установить прозрачный или матовый защитный колпак;
  • светильник закрепляется на потолке и подключается к сети питания 220 В.


Класс газоразрядных источников света, к которому относятся люминесцентные лампы, требует использования специальной аппаратуры, осуществляющей прохождение дугового разряда внутри стеклянного герметичного корпуса.

Ее форма изготавливается в виде трубки. Она может быть прямой, изогнутой или закрученной.

Поверхность стеклянной колбы внутри покрыта слоем люминофора, а на ее концах расположены вольфрамовые нити накала. Внутренний объем герметичен, заполнен инертным газом невысокого давления с парами ртути.

Свечение люминесцентной лампы происходит за счет создания и поддержания разряда электрической дуги в инертном газе между нитями накала, которые работают по принципу термоэлектронной эмиссии. Для ее протекания через вольфрамовую проволоку пропускается электрический ток, обеспечивающий нагрев металла.

Одновременно межу нитями накала прикладывается высокая разность потенциалов, обеспечивающая энергию протекания электрической дуги между ними. Пары ртути улучшают путь тока для нее в среде инертного газа. Слой люминофора преобразовывает оптические характеристики потока исходящих световых лучей.

Обеспечением прохождения электротехнических процессов внутри люминесцентной лампы занимается пускорегулирующая аппаратура . Ее сокращенно называют аббревиатурой ПРА.

Типы пускорегулирующих аппаратов

В зависимости от используемой элементной базы устройства ПРА могут быть выполнены двумя способами:

1. электромагнитной конструкцией;

2. электронным блоком.

Первые модели люминесцентных ламп работали исключительно за счет первого метода. Для этого применялись:

    стартер;

    дроссель.

Электронные блоки появились не так давно. Их стали выпускать после массового, бурного развития предприятий, производящих современный ассортимент электронной базы на основе микропроцессорных технологий.

Электромагнитные пускорегулирующие аппараты

Принцип работы люминесцентной лампы с электромагнитным ПРА (ЭМПРА)

Стартерная схема запуска с подключением электромагнитного дросселя считается традиционной, классической. Благодаря относительной простоте и дешевизне она остается популярной, продолжает массово использоваться в схемах освещения.



После подачи сетевого питания на лампу напряжение через обмотку дросселя и вольфрамовые нити накала подводится к . Он создан в виде малогабаритной газоразрядной лампы.

Поступившее на ее электроды напряжение сети вызывает между ними тлеющий разряд, формирующий свечение инертного газа и нагрев его среды. Находящийся рядом воспринимает его, изгибается. изменяя свою форму, и замыкает промежуток между электродами.

В цепи электрической схемы образуется замкнутый контур и по нему начинает течь ток, нагревая нити накала люминесцентной лампы. Вокруг них образуется термоэлектронная эмиссия. Одновременно происходит разогрев паров ртути, находящихся внутри колбы.

Образовавшийся электрический ток примерно наполовину снижает напряжение, приложенное от сети на электроды стартера. Тлеющий между ними разряд снижается, а температура падает. Биметаллическая пластина уменьшает свой изгиб, разъединяя цепь между электродами. Ток через них прерывается, а внутри дросселя создается ЭДС самоиндукции. Она мгновенно создает кратковременный разряд в подключенной к ней схеме: между нитями накала люминесцентной лампы.

Его величина достигает нескольких киловольт. Ее хватает для создания пробоя среды инертного газа с подогретыми парами ртути и разогретыми нитями накала до состояния термоэлектронной эмиссии. Между концами лампы возникает электрическая дуга, являющаяся источником света.

В то же время величины напряжения на контактах стартера не хватает для пробоя его инертного слоя и повторного замыкания электродов биметаллической пластины. Они так и остаются в разомкнутом состоянии. Стартер в дальнейшей схеме работы участие не принимает.

После запуска свечения ток в цепи необходимо ограничивать. Иначе возможно перегорание элементов схемы. Эта функция тоже возложена на . Его индуктивное сопротивление ограничивает возрастание тока, предотвращает выход лампы из строя.

Схемы подключения электромагнитных ПРА

На основе изложенного выше принципа работы люминесцентных ламп для них создаются различные схемы подключения через пускорегулирующую аппаратуру.

Самой простой является включение дросселя и стартера на одну лампу.



При таком способе в схеме питания возникает дополнительное индуктивное сопротивление. Чтобы уменьшить реактивные потери мощности от его действия используют компенсацию за счет включения на входе схемы конденстора, сдвигающего угол вектора тока в противовположную сторону.



Если мощность дросселя позволяет использовать его для работы нескольких люминесцентных ламп, последние собирают в последовательные цепочки, а для запуска каждой используют индивидуальные стартеры.



Когда требуется компенсировать действие индуктивного сопротивления, то применяют тот же прием, что и раньше: подключают компенсационный конденсатор.



Вместо дросселя можно использовать в схеме автотрансформатор, который обладает тем же индуктивным сопротивлением и позволяет регулировать величину выходного напряжения. Компенсацию потерь активной мощности на реактивной составляющей осуществляют подключением конденсатора.



Может использоваться для освещения несколькими лампами, подключаемыми по последовательной схеме.



При этом важно создавать резерв его мощности для обеспечения надежной работы.

Недостатки эксплуатации электромагнитных ПРА

Габариты дросселя требуют создания отдельного корпуса для пускорегулирующей аппаратуры, занимающего определенное пространство. При этом он издает хоть и небольшой, но посторонний шум.

Конструкция стартера не отличается надежностью. Периодически лампы гаснут из-за его неисправностей. При отказе стартера происходит фальстарт, когда можно визуально наблюдать несколько вспышек до начала стабильного горения. Это явление влияет на ресурс нитей накала.

Электромагнитные ПРА создают относительно высокие потери энергии, снижают КПД.

Умножители напряжения в схемах запуска люминесцентных ламп

Эта схема часто встречается в любительских разработках и не используется в промышленных образцах, хотя не требует сложной элементной базы, проста в изготовлении, работоспособна.



Принцип ее работы заключается в ступенчатом увеличении питающего напряжения сети до значительно бо́льших значений, вызывающих пробой изоляции среды инертного газа с парами ртути без их разогрева и обеспечения термоэлектронной эмиссии нитей накала.

Такое подключение позволяет использовать даже баллоны ламп с перегоревшими нитями накала. Для этого в их схеме с обеих сторон колбы просто шунтируют внешними перемычками.

Подобные схемы обладают повышенной опасностью к поражению человека электрическим током. Ее источником является выходящее с умножителя напряжение, которое можно довести до киловольта и больше.

Мы не рекомендуем эту схему к использованию и публикуем ее для разъяснения опасности создаваемых ею рисков. Заостряем на этом вопросе ваше внимание специально: сами не применяйте этот способ и предупреждайте своих коллег об этом главном недостатке.

Электронные пускорегулирующие аппараты

Особенности работы люминесцентной лампы с электронным ПРА (ЭПРА)

Все физические законы, происходящие внутри стеклянной колбы с инертным газом и парами ртути для образования разряда дуги и свечения остались без изменений в конструкциях ламп, управляемых электронными пускорегулирующими устройствами.

Поэтому алгоритмы работы ЭПРА остались теми же, что и у их электромагнитных аналогов. Просто старая элементная база заменена современной.

Это обеспечило не только высокую надежность пускорегулирующей аппаратуры, но и ее маленькие габариты, позволяющие устанавливать ее в любом подходящем месте, даже внутри цоколя обычной лампочки Е27, разработанного еще Эдисоном для ламп накаливания.

По этому принципу работают малогабаритные энергосберегающие светильники с люминесцентной трубкой сложной закрученной формы, которые по габаритам не превышают лампы накаливания и создаются для подключения к сети 220 через старые патроны.

В большинстве случаев для электриков, занимающихся эксплуатацией люминесцентных ламп, достаточно представлять простую схему подключения, выполненную с большим упрощением из нескольких составных частей.



Из электронного блока ЭПРА для эксплуатации выделяются:

    входная цепь, подключаемая к сети питания 220 вольт;

    две выходных цепи №1 и №2, присоединяемые к соответствующим нитям накала.

Обычно электронный блок выполняется с высокой степенью надежности, длительным ресурсом. На практике чаще всего у энергосберегающих ламп при эксплуатации происходит разгерметизация корпуса колбы по разным причинам. Из него сразу уходит инертный газ и пары ртути. Такая лампа уже не загорится, а электронный блок у нее остается в исправном состоянии.

Его можно использовать повторно, подключить на колбу соответствующей мощности. Для этого:

    цоколь лампы аккуратно разбирают;

    из него извлекают электронный блок ЭПРА;

    помечают пару проводов, задействованных в схеме питания;

    маркируют проводники выходных цепей на нити накала.

Устройство электромагнитных ПРА

Конструктивно электронный блок состоит из нескольких частей:

    фильтра, устраняющего и блокирующего электромагнитные помехи, поступающие из питающей сети в схему или создаваемые электронным блоком при работе;

    выпрямителя синусоидальных колебаний;

    схемы коррекции мощности;

    сглаживающего фильтра;

    инвертора;

    электронного балласта (аналог дросселя).

Электрическая схема инвертора работает на мощных полевых транзисторах и создается по одному из типовых принципов: мостовой или полумостовой схеме их включения.



В первом случае работает четыре ключа в каждом плече моста. Такие инверторы создаются для преобразования больших мощностей у осветительных систем в сотни ватт. Полумостовая схема содержит всего два ключа, обладает меньшим КПД, используется чаще.



Обе схемы управляются от специального электронного блока - микродрайвера.

Как работает электронная ПРА

Для обеспечения надежного свечения люминесцентной лампы алгоритмы ЭПРА разбиты на 3 технологических этапа:

1. подготовительный, связанный с первоначальным нагревом электродов с целью увеличения термоэлектронный эмиссии;

2. поджигание дуги подачей импульса высоковольтного напряжения;

3. обеспечение стабильного протекания дугового разряда.

Такая технология позволяет быстро включать лампу в работу даже при отрицательной температуре, обеспечивает мягкий запуск и выдачу минимально необходимого напряжения между нитями накала для хорошего свечения дуги.

Одна из простых принципиальных схем подключения электронного ПРА к люминесцентной лампе показана ниже.



Диодный мост на входе выпрямляет переменное напряжение. Его пульсации сглаживаются конденсатором С2. После него работает двухтактный инвертор, включенный по полумостовой схеме.

В его состав входят 2 n-p-n транзистора, создающие колебания высокой частоты, которые управляющими сигналами подаются в противофазе на обмотки W1 и W2 трехобмоточного тороидального в/ч трансформатора L1. Его оставшаяся обмотка W3 выдает высокое резонансное напряжение на люминесцентную лампу.

Таким образом, при включении питания до начала зажигания лампы в резонансном контуре создается максимальный ток, который обеспечивает нагрев обеих нитей накала.

Параллельно лампе подключен конденсатор. На его обкладках создается большое резонансное напряжение. Оно запускает электрическую дугу в среде инертных газов. Под ее действием обкладки конденсатора закорачиваются и резонанс напряжений прерывается.

Однако свечение лампы не прекращается. Она продолжает работать автоматически за счет оставшейся доли приложенной энергии. Индуктивное сопротивление преобразователя регулирует ток, проходящий через лампу, поддерживает его в оптимальном диапазоне.

Балласт для газоразрядной лампы (люминесцентные источники света) применяется с целью обеспечения нормальных условий работы. Другое название – пускорегулирующий аппарат (ПРА). Существует два варианта: электромагнитный и электронный. Первый из них отличается рядом недостатков, например, шум, эффект мерцания люминесцентной лампы.

Второй вид балласта исключает многие минусы в работе источника света данной группы, поэтому и более популярен. Но поломки в таких приборах тоже случаются. Прежде чем выбрасывать, рекомендуется проверить элементы схемы балласта на наличие неисправностей. Вполне реально самостоятельно выполнить ремонт ЭПРА.

Разновидности и принцип функционирования

Главная функция ЭПРА заключается в преобразовании переменного тока в постоянный. По-другому электронный балласт для газоразрядных ламп называется еще и высокочастотным инвертором. Один из плюсов таких приборов – компактность и, соответственно, небольшой вес, что дополнительно упрощает работу люминесцентных источников света. А еще ЭПРА не создает шум при работе.

Балласт электронного типа после подключения к источнику питания обеспечивает выпрямление тока и подогрев электродов. Чтобы люминесцентная лампа зажглась, подается напряжение определенной величины. Настройка тока происходит в автоматическом режиме, что реализуется посредством специального регулятора.

Такая возможность исключает вероятность появления мерцания. Последний этап – происходит высоковольтный импульс. Поджиг люминесцентной лампы осуществляется за 1,7 с. Если при запуске источника света имеет место сбой, тело накала моментально выходит из строя (перегорает). Тогда можно попытаться сделать ремонт своими руками, для чего требуется вскрыть корпус. Схема электронного балласта выглядит так:


Основные элементы ЭПРА люминесцентной лампы: фильтры; непосредственно сам выпрямитель; преобразователь; дроссель. Схема обеспечивает еще и защиту от скачков напряжения питающего источника, что исключает необходимость ремонта по данной причине. А, кроме того, балласт для газоразрядных ламп реализует функцию коррекции коэффициента мощности.

По целевому назначению встречаются следующие виды ЭПРА:

  • для линейных ламп;
  • балласт, встроенный в конструкцию компактных люминесцентных источников света.

ЭПРА для люминесцентных ламп подразделяются на группы, отличные по функциональности: аналоговые; цифровые; стандартные.

Схема подключения, запуск

Пускорегулирующий аппарат подключается с одной стороны к источнику питания, с другой – к осветительному элементу. Нужно предусмотреть возможность установки и крепления ЭПРА. Подключение производится в соответствии с полярностью проводов. Если планируется установить две лампы через ПРА, используется вариант параллельного соединения.

Схема будет выглядеть следующим образом:


Группа газоразрядных люминесцентных ламп не может нормально работать без пускорегулирующего аппарата. Его электронный вариант конструкции обеспечивает мягкий, но одновременно с тем и практически мгновенный запуск источника света, что дополнительно продлевает срок его службы.

Поджиг и поддержание функционирования лампы осуществляется в три этапа: прогрев электродов, появление излучения в результате высоковольтного импульса, поддержание горения осуществляется посредством постоянной подачи напряжения небольшой величины.

Определение поломки и ремонтные работы

Если наблюдаются проблемы в работе газоразрядных ламп (мерцание, отсутствие свечения), можно самостоятельно сделать ремонт. Но сначала необходимо понять, в чем заключается проблема: в балласте или осветительном элементе. Чтобы проверить работоспособность ЭПРА, из светильников удаляется линейная лампочка, электроды замыкаются, и подсоединяется обычная лампа накаливания. Если она загорелась, проблема не в пускорегулирующем аппарате.

В противном же случае нужно искать причину поломки внутри балласта. Чтобы определить неисправность люминесцентных светильников, необходимо «прозвонить» все элементы по очереди. Начинать следует с предохранителя. Если один из узлов схемы вышел из строя, необходимо заменить его аналогом. Параметры можно увидеть на сгоревшем элементе. Ремонт балласта для газоразрядных ламп предполагает необходимость использования навыков владения паяльником.

Если с предохранителем все в порядке, далее следует проверить на исправность конденсатор и диоды, которые установлены в непосредственной близости к нему. Напряжение конденсатора не должно быть ниже определенного порога (для разных элементов эта величина разнится). Если все элементы ПРА в рабочем состоянии, без видимых повреждений и прозвон также ничего не дал, осталось проверить обмотку дросселя.

В некоторых случаях проще купить новую лампу. Это целесообразно сделать в случае, когда стоимость отдельных элементов выше ожидаемого предела или при отсутствии достаточных навыков в процессе пайки.

Ремонт компактных люминесцентных ламп выполняется по сходному принципу: сначала разбирается корпус; проверяются нити накала, определяется причина поломки на плате ПРА. Часто встречаются ситуации, когда балласт полностью исправен, а нити накаливания перегорели. Починку лампы в этом случае произвести сложно. Если в доме имеется еще один сломанный источник света сходной модели, но с неповрежденным телом накала, можно совместить два изделия в одно.

Таким образом, ЭПРА представляет группу усовершенствованных аппаратов, обеспечивающих эффективную работу люминесцентных ламп. Если было замечено мерцание источника света или он и вовсе не включается, проверка балласта и его последующий ремонт позволят продлить срок службы лампочки.