Базовые формулы. Магнитное поле напряженность и индукция

Правило правой руки или буравчика:

Направление силовых линий магнитного поля и направление создающего его тока связаны между собой известным правилом правой руки или буравчика, которые ввел еще Д.Максвелл и иллюстрируется следующими рисунками:

Мало кто знает, что буравчик - это инструмент для бурения-сверления отверстий в дереве. Поэтому более понятно можно это правило назвать правилом винта, шурупа или штопора. Однако хвататься за провод как на рисунке иногда опасно для жизни!

Магнитная индукция B :

Магнитная индукция - является основной фундаментальной характеристикой магнитного поля, аналогичной вектору напряженности электрического поля E . Вектор магнитной индукции всегда направлен по касательной к магнитной линии и показывает ее направление и силу. За единицу магнитной индукции в B = 1Тл принимается магнитная индукция однородного поля, в котором на участок проводника длиной в l = 1 м, при силе тока в нем в I = 1 А, действует со стороны поля максимальная сила Ампера - F = 1 H. Направление силы Ампера определяется по правилу левой руки . В системе СГС магнитная индукция поля измеряется в гауссах (Гс), в системе СИ - в теслах (Тл).

Напряженность магнитного поля H :

Еще одной характеристикой магнитного поля является напряженность , которая является аналогом вектора электрического смещения D в электростатике. Определяется по формуле:

Напряженность магнитного поля - величина векторная, является количественной характеристикой магнитного поля и не зависит от магнитных свойств среды. В системе СГС напряженность магнитного поля измеряется в эрстедах (Э), в системе СИ - в амперах на метр (А/м).

Магнитный поток Ф:

Магнитный поток Ф - скалярная физическая величина, характеризующая число линий магнитной индукции, пронизывающих замкнутый контур. Рассмотрим частный случай. В однородном магнитном поле , модуль вектора индукции которого равен ∣В ∣, помещен плоский замкнутый контур площадью S. Нормаль n к плоскости контура составляет угол α с направлением вектора магнитной индукции B . Магнитным потоком через поверхность называется величина Ф, определяемая соотношением:

В общем случае магнитный поток определяется как интеграл вектора магнитной индукции B через конечную поверхность S.

Стоит отметить, что магнитный поток через любую замкнутую поверхность равен нулю (теорема Гаусса для магнитных полей). Это означает, что силовые линии магнитного поля нигде не обрываются т.е. магнитное поле имеет вихревую природу, а также что невозможно существование магнитных зарядов, которые создавали бы магнитное поле подобно тому, как электрические заряды создают электрическое поле. В СИ единицей магнитного потока является Вебер (Вб), в системе СГС - максвелл (Мкс); 1 Вб = 10 8 Мкс.

Определение индуктивности:

Индуктивность - коэффициент пропорциональности между электрическим током, текущим в каком-либо замкнутом контуре, и магнитным потоком, создаваемым этим током через поверхность, краем которой является этот контур.

Иначе, индуктивность - коэффициент пропорциональности в формуле самоиндукции .

В системе единиц СИ индуктивность измеряется в генри (Гн). Контур обладает индуктивностью в один генри, если при изменении тока на один ампер в секунду на выводах контура будет возникать ЭДС самоиндукции в один вольт.

Термин «индуктивность» был предложен Оливером Хевисайдом – английским ученым-самоучкой в 1886 году. Говоря просто, индуктивность это свойство проводника с током накапливать энергию в магнитном поле, эквивалентна емкости для электрического поля. Она не зависит от величины тока, а только от формы и размеров проводника с током. Для увеличения индуктивности проводник наматывают в катушки , расчету которых и посвящена программа

Одной из важнейших физических характеристик как естественной, так и искусственной среды обитания человека является магнитное поле. Оно представляет собой одну из форм существования электромагнитного поля. Главной отличительной чертой такой формы является то, что магнитное поле воздействует исключительно на те частицы и тела, которые, с одной стороны, находятся в непрерывном движении, а с другой - содержат определенный электрический заряд.

Еще из курса физики известно, что для создания магнитного поля необходимы проводник с током и переменные электрические поля. Важнейшими характеристиками этого поля служат вектор магнитной индукции и магнитная напряженность.

Напряженность магнитного поля представляет собой одну из векторных величин, изучаемых в физике, которая складывается из разности вектора электромагнитной индукции, а также вектора намагниченности. Так как магнитная напряженность есть то ее единицей измерений в общепринятой и самой распространенной принято считать ампер на метр. Чтобы получить напряженность электромагнитного поля величиной в 1 а/м, необходимо, чтобы в прямолинейном протяженном проводе с максимально малым диаметром сечения протекал электрический ток силой 2π ампера. В этом случае во всех пунктах образованного этим на расстоянии 1 метр напряженность электромагнитного поля и будет равна 1 а/м.

Напряженность магнитного поля, или, другими словами, количество силовых линий этого поля, можно оценить. В частности, чтобы определить направление этих линий, можно воспользоваться хорошо известным всем Это правило - один из краеугольных камней всей электротехники. Оно гласит, что в том случае если общая направленность движения буравчика полностью тождественна направлению электрического тока в конкретном проводнике, то направленность вращения буравчика тождественна направлению магнитных линий.

Ориентируясь на данное правило, легко доказать, что магнитные линии, которые возникают в витках катушки, направлены в одну и ту же сторону. Из этого можно сделать вывод, что напряженность магнитного поля внутри катушки будет намного более сильной, чем напряженность, создаваемая одним витком. Это связано в том числе и с тем, что силовые линии соседних витков направлены параллельно друг другу, но в разные стороны, следовательно, напряженность магнитного поля между ними будет неуклонно уменьшаться.

Вполне естественно, что магнитное поле любой катушки прямо пропорционально величине который проходит по ее виткам. Кроме того, напряженность магнитного поля напрямую зависит от того, насколько близко эти витки располагаются по отношению друг к другу. Опытным путем доказано, что в двух катушках, в которых течет электрический ток одинаковой силы, а число витков абсолютно совпадает, магнитное поле будет сильнее в той, где катушка обладает меньшей осевой длиной, то есть ее витки расположены значительно ближе друг к другу.

Очень значимой является числовая величина ампервитков, которую можно рассчитать, умножив количество витков в катушке на силу протекающего в них тока. От величины ампервитков будет зависеть и магнитодвижущая сила. Опираясь на это понятие, можно легко доказать, что магнитное поле исследуемой катушки находится в прямо пропорциональной зависимости от количества ампервитков на единицу осевой длины. Другими словами, напряженность электромагнитного поля тем выше, чем больше величина магнитодвижущей силы, создающейся в исследуемой катушке.

Помимо искусственно создаваемых магнитных полей, существует еще естественное которое формируется, в основном, во внешней оболочке ядра. Основные характеристики этого поля, в том числе и напряженность, изменяются как во времени, так и в пространстве, однако все основные законы, характерные для искусственно создаваемых полей, работают и в геомагнитном поле.

Что такое магнитное напряжение?

Магнитное напряжение определение

Определение магнитного напряжения:

Магнитное напряжение на прямолинейном участке контура есть произведение длины участка и проекции вектора магнитной напряженности на этот прямолинейный участок.

Всё это относится к однородному магнитному полю. Если поле не однородно или участок контура не прямой, то выбирают малую часть контура, которую можно считать прямолинейной, а магнитное поле в месте расположения этого участка однородным.

Магнитное напряжение формула

На картинке выше показано однородное магнитное поле с вектором напряженности H и криволинейный контур L. Контур криволинейный, поэтому определить магнитное напряжение сразу на всём контуре невозможно. Выделим на контуре отрезок ΔL (показан жирной линией), который можно считать прямолинейным, и будем находить магнитное напряжение только на этом участке. Проекция вектора напряженности магнитного поля H на направление отрезка ΔL равна:

H L = H * cos α

где α - угол между вектором H и отрезком ΔL.

Магнитное напряжение на отрезке ΔL (формула магнитного напряжения):

U m = (H * cos α) * ΔL = H L * ΔL

Выделив прямолинейные участки на остальных частях контура L, найдём магнитные напряжения на них. Тогда полное магнитное напряжение на всём контуре L будет равно сумме магнитных напряжений участков:

U L = Σ H L * ΔL

Измеряется магнитное напряжение в амперах: А.

Магнитное напряжение вдоль контура L зависит от формы этого контура.

Задача про магнитное напряжение

Теперь решим простую задачу: как будут соотноситься магнитные напряжения на отрезках ΔL, ΔL 1 , ΔL 2 (см. рисунок), т.е. где они больше, а где меньше? Длины всех участков одинаковы, магнитное поле всюду однородно.

Решение. При этих условиях магнитные напряжения на означенных отрезках будут отличаться только величинами проекций вектора напряженности магнитного поля на направления этих отрезков. Отрезок ΔL 1 расположен под меньшим углом к направлению вектора Η по сравнению с отрезками ΔL и ΔL 2 , значит cos α ближе к единице и магнитное напряжение там будет больше. Отрезок ΔL 2 расположен под прямым углом к направлению вектора напряженности, значит проекция вектора напряженности Η на направление отрезка ΔL 2 будет равна нулю.

А теперь внимание, правильный ответ: наибольшее магнитное напряжение получим на отрезке ΔL 1 , а наименьшее - на отрезке ΔL 2 .


Чтобы убедиться в присутствии магнитного поля в проводнике через который идет ток, можно поднести сверху к нему обычный компас. Стрелка компаса сразу отклонится в сторону. Если поднести компас к проводнику с током снизу - стрелка отклонится в противоположную сторону.

Итак, стрелка компаса отклонилась и установилась вдоль магнитного поля, создаваемого током. Впервые, такой опыт провел в 1820 году, датский физик Эрстед.

Таким образом, электрический ток бегающий по проводнику, создает магнитное поле вокруг этого проводника.

Возле проволочного витка с током на рисунке выше можно заметить две области южный и северный магнитные полюсы. Направление магнитного поля определяется направлением тока, который это поле создал. Если расположить рядом друг с другом два проводника и пропустить через них эл.ток, то в любой точке между ними силы, действующие на стрелку компаса, будут задаваться магнитными полями обоих проводников. Причем в зависимости от токового направления оба магнитных поля могут либо действовать друг против друга и даже полностью взаимно уничтожаться, либо - синхронно. При согласованном действии полей их обоюдные усилия складываются.

Простой металлический проводник с током, образующий магнитное поле небольшой величины, не имеет практической ценности, а вот если его свернуть в кольцо, то появляются сразу три явления: во-первых, силовые линии собираются вместе, концентрируются в центре кольца и появляются Южный и Северный полюсы.

Большее усиление суммарного маг. поля достигается, если свернуть из проводника сразу несколько колец. Магнитное поле внутри такого кольца будет суммой многих согласованно действующих полей и многократно усилится, по сравнению с полем не изогнутого проводника. Такой спиралевидный компонент называют катушкой. На этом принципе работают электромагниты во всех электронных устройствах. Он состоит из огромного числа витков, уложенных очень плотно. Это позволяет всем силовым линиям собраться вместе, при протекании эл.тока.

Чем больше количество витков в катушке тем больше силовых линий соберется вместе, и тем больше ток. Следовательно, величина магнитного поля прямо пропорциональна количеству витков и токовому номиналу. Для поддержания силовых линий внутрь катушки помещают металлический сердечник.

Убедившись, опытным путем в существовании вокруг проводника с током магнитного поля, то-есть пространства, где присутствуют некоторые силы, попытаемся разобраться со свойствами этого поля в следующем эксперименте. Поместим на бумажный лист тонкий слой железных и проложим через центр листа металлический проводник. В момент подачи напряжения через проводник, опилки лягут вокруг проводника правильными концентрическими окружностями. Линии, нарисованные опилками, полностью совпадают с силовыми линиями магнитного поля . Таким образом, магнитные силовые линии не имеют ни начала, ни конца, а являются полностью замкнутыми. Стрелка компаса ориентированная на север, в магнитном поле, всегда показывает направлении вдоль магнитных силовых линий.


Свойства магнитных силовых линий обладают отдельными чертами со свойствами электрических силовых линий. Магнитные силовые линии пытаются сократить свою длину; если, силовые линии однонаправленные, то они будут отталкиваться друг от друга, е если противополож­но направленные, то притягиваются и даже могут взаимно уничтожить друг друга.

Магнитные силовые линии протекают через железо гораздо легче, чем через другие вещества. Если расположить железный пустотелый шар в магнитном поле, созданным постоянным магнитом, то силовые линии пройдут через оболочку этого шара, не попадая в внутреннюю полость.

Это свойство магнитного поля получило широкое распространение в радиоэлектронике для защиты различных компонентов схемы, например, трансформаторов, катушек индуктивности и пр., от влияния внешних магнитных полей. Такая защита получила название антимагнитное экранирование .

Напряженность магнитного поля , оценивают по количеству магнитных силовых линий в какой-то точке поля. Напряженность магнитного поля обозначают в формулах латинским символом Н . Напряженность магнитного поля показывает общее число силовых линий магнитного поля, проходящих через один см 2 поперечного сечения поля.

Магнитные силовые линии, пронизывающие объект, называют магнитным потоком . Он будет тем больше, чем больше количество силовых линий проходит через какой-то предмет. Магнитный поток в формулах обозначают символом Ф.

Направление силовых линий связано с направлением следования . Наиболее простым способом определения направления магнитных силовых линий считается использование правила буравчика

Определение правило буравчика : если направление поступательного движения буравчика совпадает с направлением тока идущего через проводник, то направление вращения буравчика совпадет с направлением магнитных силовых линий .

Придадим проводнику форму кольца. Пользуясь правилом буравчика, мы легко выясним, что силовые линии, генерируемые всеми участками проводника, имеют внутри кольца одинаковое направление. Поэтому, внутри кольцевого проводника магнитное поле будет на порядок сильнее, чем снаружи.

В следующем опыте изготовим из проводника цилиндрическую спираль и подадим на нее электрический ток, который будет идти по всем виткам в одном и том же направлении. Это будет эквивалентно тому, что мы разместим ряд кольцевых проводников на одной общей оси. Проводник, имеющий такую форму, получил название соленойд или катушка.

Используя правило буравчика, мы легко поймем, что силовые линии, создаваемые витками соленойда, имеют внутри него одинаковое направление и значит более сильное магнитное поле, чем внутри любого одного витка. Между соседними витками катушки магнитные силовые линии направлены навстречу друг другу, и по­этому магнитное поле в этих местах будет ослаблено. Снаружи катушки направление всех силовых линий будет совпадать.

Магнитное поле катушки сильнее, если выше сила тока, идущего по ее виткам, и чем ближе друг к другу, расположены они. Произведение силы тока в амперах на число витков, называется ампер- виток и описывает магнитное действие тока, то есть магнитодвижущую силу. Используя новые термины, можно сказать, что магнитное поле катушки тем выше, чем больше ампервитков на единицу осевой длины катушки .

Способность влиять магнитным полем на объект называется магнитной индукцией . При помещении в соленойд стального стержня (сердечника) ее магнитный поток увеличивается многократно. Объясняется это так. Железо, входящее в любой сплав стали имеет кристаллическую структуру. Отдельные кристаллы обладают свойствами мини магнитов. В обычном состоянии они расположены хаотично. Магнитные поля их взаимно уничтожаются, и поэтому стальной сердечник не проявляет магнитных свойств.

При помещении стального сердечника в магнитное поле молекулярные магниты поворачиваются на некоторый угол и устанавливаются вдоль силовых линий. Чем выше уровень магнитного поля, тем выше число молекулярных магнитов поворачивается и тем упорядочнее становится их расположение. Поля одинаково направленных магнитов не уничтожают уже друг друга, а наоборот, возрастают, увеличивая дополнительные силовые линии. Магнитный поток, создаваемый мини магнитами, во много раз выше основного магнитного потока, создаваемого соленойдом; именно поэтому магнитный поток соленойда при помещении в нее стального сердечника увеличивается многократно.

Если плавно увеличивать ток, протекающий по виткам соленойда, то магнитный поток в сердечнике будет возрастать до тех пор, пока все молекулярные магниты не повернутся по направлению силовых линий. После этого возрастание магнитного потока закончится. Это состояние сердечника называется магнитным насыщением .


Число, показывающее, во сколько раз вырос магнитный поток соленоида при введении в него сердечника, называется магнитной проницаемостью материала и обозначается символом µ . Магнитная проницаемость железа и отдельных стальных сплавов доходит до нескольких сотен тысяч. Для большинства обычных материалов она близка к единице.

Произведение напряженности магнитного поля Н на проницаемость материала µ получила название магнитной индукцией В .

Магнитная индукция определяет количество силовых линий в каком либо материале, проходящих через 1 см 2 сечения материала. После прекращения движения тока в катушке с обычным железным сердечником, теряет свои магнитные свойства, потому что молекулярные магниты снова располагаются хаотично. Если же сердечник стальной, то он сохраняет магнитные свойства. Объясняется это тем, что в стали молекулярные магниты способны сохранять свое направленное расположение. Соленойд с железным сердечником называют электромагнитом, так как его магнитные свойства обусловлены протеканием тока.

Поместим между полюсами постоянного магнита проводник, по которому идет электрический ток. Мы сразу заметим, что проводник будет выталкиваться полем магнита из междуполюсного пространства. Объяснить это достаточно просто...

Для определения полярности электромагнита применяют "Правило левой руки". Которое в упращенном варианте звучит следующим образом. Обхватывая левой рукой катушку индуктивности, четыре пальца покажут токовое направление, а большой укажет на Северный полюс магнита.


Правая рука повернутая ладонью навстречу силовым линиям магнитного поля, а большой палец направлен в сторону движения проводника, то четыре оставшихся пальца укажут, в каком направлении идет индукционный ток

Самоиндукция. ЭДС самоиндукции

В первые моменты времени после подачи тока значительная часть энергии источника питания расходуется на создание магнитного поля и лишь минимальная часть - на преодоление сопротивления проводника. Поэтому в момент замыкания схемы ток не сразу достигнет предельной своего максимального значения. Она установится в цепи лишь после окончания процесса создания магнитного поля

Наверное, все мы сталкивались в детстве с чудесными свойствами обыкновенных магнитов. Небольшой кусок металла привлекал к себе одни кусочки железа и отталкивал другие.

Удивительные свойства магнита этим не ограничиваются. Например, магнит, подвешенный на нити, всегда располагается в пространстве определенным образом - это свойство легло в основу изобретения компаса. Конечные точки магнита являются наиболее «сильными». Их принято называть «полюсами». Специфические свойства магнита обусловлены его магнитными полями, которые не являются веществом, но ведут себя весьма осязаемо. Одной из самых важных характеристик является напряженность магнитного поля.

Характеристики магнитного поля

Любое магнитное поле обладает энергией, которая проявляет себя при взаимодействии с другими телами. Под влиянием магнитных сил движущиеся частички меняют направление своего потока. Магнитное поле появляется лишь вокруг тех электрических зарядов, которые находятся в движении. Всякое изменение электрического поля влечет за собой появление магнитных полей.

Обратное утверждение также верно: изменение магнитного поля - предпосылка к возникновению электрического. Такое тесное взаимодействие привело к созданию теории электромагнитных сил, с помощью которых и сегодня успешно объясняются различные физические явления.

Изображение магнитных полей

Магнитное поле можно изобразить на листе бумаги при помощи силовых линий. Их рисуют таким образом, чтобы реальное направление сил поля в каждой точке совпадало с нарисованными. Направления силовых полей могут быть определены при помощи компасной стрелки, северный полюс которой всегда направлен по касательной к силовой линии. Северный полюс принято обозначать местом, откуда выходят силовые линии магнитного поля, и южный - местом их вхождения. Следует помнить, что такое разделение весьма условно, и принимается во внимание только из-за своей наглядности.

Что такое магнитная напряженность

Железные опилки, выстраивающиеся вдоль магнитных полей, доказывают, что магнитное поле имеет два важных показателя - величину и направление. В любой точке пространства магнитное поле распространяется со скоростью, равной скорости света в вакууме - 300000 километров/сек.

Чтобы дать определение характеристикам магнитного поля, ученые ввели величину «напряженность». Это векторная величина, указывающая направление действия магнитного поля и на количество его силовых линий. По своим характеристикам напряженность магнитного поля аналогична понятию «силы» в механике. Этот показатель не зависит от параметров среды, в которой проводятся эксперименты, а только от силы магнитного потока и расстояния до источника, продуцирующего поле. В различных случаях таким источником может служить одиночный магнит, магнитная катушка, электрический провод. В каждом из этих случаев возникает магнитное поле с определенными характеристиками.

Напряженность электромагнитного поля в экспериментах

Рассмотрим одиночный провод, по которому движется электрический ток. При движении этого провода вокруг него возникает магнитное поле. Его характеристики можно выразить через напряженность, которая определяется мерой воздействия магнитного поля на исследуемое тело.

Можно исследовать магнитное поле внутри катушки. В этом случае напряженность будет напрямую зависеть от количества витков катушки и расстояния между нею и исследуемым телом.

Объединяя эти два вывода, можно подвести итоги: напряженность магнитного поля в любой точке пространства обратно пропорциональна длине магнитной линии и прямо пропорциональна произведению количества витков катушки на силу тока.

Магнитная индукция

Определение напряженности магнитного поля было бы неполным без понятия «магнитная индукция». Эта величина объясняет, какую работу способно производить данное магнитное поле. Чем сильнее магнитное поле, тем больше работы оно может производить, тем больше значение его магнитной индукции.

В физике магнитная индукция обозначается литерой Ḇ. Наглядно ее можно изобразить в виде плотности магнитных силовых линий, приходящихся на единицу площади поверхности, которая расположена перперндикулярно к измеряемому магнитному полю. В настоящее время магнитная индукция измеряется в Теслах.

Магнитный поток

Еще одна величина, емко характеризующая магнитное поле. Магнитный поток определяет, какое количество силовых линий пронизывает определенную единицу площади. В однородном магнитном поле значение магнитного потока будет вычислено по формуле:

Ф= Ḇ/S, где:

Ф - магнитный поток;

Ḇ - значение магнитной индукции;

S - площадь, через которую проходя силовые линии магнитного поля.

В системе единиц СИ магнитный поток измеряется в Веберах.

Формула напряженности

Физический смысл этой величины можно выразить формулой: Н= I×ω/ L, где:

L - расстояние между телом и источником магнитного поля;

ω - количество витков катушки;

I - сила тока в электрической цепи.

Из этого уравнения можно сделать вывод, что напряженность измеряется в [А/м], поскольку витки в катушке - количественная величина.

Намагничивающая сила

Произведение Н×I в данной формуле является не чем иным, как аналогией напряжения электрического поля. Если этот параметр применить ко всей длине линии магнитной индукции, то полученное произведение будет носить название намагничивающей силы (н.с). Эта физическая величина измеряется в амперах, но специалисты предпочитают термин «ампер-виток», подчеркивающий прямую зависимость силы от количества витков катушки.

Правило буравчика

Чтобы определить направление магнитного поля катушки или провода, специалисты применяют правило буравчика. Если «вкручивающее» движение воображаемого буравчика параллельно направлению тока в цепи, то "рукоятка" буравчика показывает, как будут располагаться силовые линии магнитного поля.

Примеры на определение напряженности магнитного поля

Пример 1. Имеется катушка с количеством витков 100 и имеющая длину 10 см. Необходимо обеспечить заданное значение напряженности магнитного поля в 5000А/м. Какой силы ток должен протекать по катушке?

Решение: согласно определению, намагничивающая сила катушки равна Н = I×ω/ L. А произведение Н×I дает намагничивающую силу. Отсюда можно вывести значение силы тока, которое равно: 5000А/м*0,1м = сила тока * количество витков. Решая простую пропорцию, получаем, что сила тока в данной задаче должна быть равна 5А.

Пример 2. В катушке 2000 витков, через нее протекает ток силой в 5 Ампер. Чему равна намагничивающаяся сила катушки?

Решение: простая формула дает ответ: н.с.= I×ω. Таким образом н.с = 2000×5 = 10000 ампер-витков.

Пример 3.

Как определить напряженность магнитного поля прямого электрического провода на расстоянии 5 см? Сила тока, текущего через провод, равна 30 А.

В этом примере нам также пригодится формула

В случае прямого провода количество витков катушки будет равно 1, а длина l = 2∙π∙r.

Отсюда можно вывести, что

Н = 30/(2*3,14*0,02) = 238,85 А/м.

Эти и подобные задачи легко можно решить при помощи базового курса школьной физики. Решение таких несложных примеров поможет понять качественную суть электромагнитных процессов в окружающей нас природе.