Защита трансформатора от высокого входного напряжения. Защита силовых трансформаторов

Источником питания электрооборудования на предприятиях являются силовые трансформаторы, чаще всего их работа связана с высоким напряжением (более 1000 В) и большими токами. Поэтому их габариты, стоимость, а также затраты на ремонт являются ощутимыми даже для крупного производства. В связи с этим соответственно, чтобы и сами эти дорогостоящие устройства и электрооборудование, которое с помощью их питается, были надёжно защищены применяется целый рад защит. Выбор их и настройка дело довольно непростое, поэтому стоит подробно разобрать каждый из них. Конечно же, это касается только крупных трёхфазных трансформаторов на подстанциях. Для питания и защиты маломощных трансформаторов достаточно автоматического выключателя или же предохранителей. Слишком дорого и неоправданно устанавливать полный список защит, например, на все сварочные трансформаторы, применяемые в цехе.

Основные защиты трансформатора

Любая релейная защита трансформатора направлена на срабатывание при повреждении или же ненормальном режиме работы этого устройства. Нужно отметить, что некоторые из них направлены на мгновенное отключение в случае аварии, а другие только подают предупреждающий сигнал персоналу. В свою очередь, персонал уже действует по инструкциям, которые разработаны непосредственно и индивидуально для каждой схемы снабжения и распределительной подстанции. Для того чтобы было видно какой тип аварии произошёл применяются параллельно и сигнальные реле (блинкер), которые должны быть подписаны в соответствии с правилами.

Для защиты трансформатора применяется целый комплекс мероприятий и электромеханических схем, вот основные из них:

  1. Дифференциальная защита. Она предохраняет от повреждений и коротких замыканий как в обмотках, так и на наружных выводах. Действует только на отключение;
  2. Газовая защита. Защищает от превышения давления внутри расширительного бачка вследствие выделения газов или же выброса масла, а также от снижения его уровня ниже определённого критического показания;
  3. Тепловая защита. Она организована в основном на термосигнализаторах (ТС), которые подают сигнал на пульт персонала или же на включения вентиляторов охлаждения. Такой вид дополнительной защиты служит как предупреждающий при начальных стадиях аварийных ситуаций. При этом выбор самого ТС не важен, главное, выставить правильно диапазон, при котором должен подаваться сигнал. Максимально допустимый нагрев масла составляет 95 градусов;
  4. Защита минимального напряжения. Предусматривает отключение при снижении входного уровня напряжения ниже допустимого. Зачастую имеет выдержку времени, которая даст возможность не реагировать на небольшие просадки;
  5. От замыкания на землю. Выполняется путём установки трансформаторов тока в соединение корпуса и заземляющего контура;
  6. Максимальная токовая (МТЗ) выполняет роль защитного механизма как при коротких замыканиях в цепи вторичного тока, так и при больших перегрузках.

Защита трансформатора дифференциальная

Это одна из самых быстродействующих и важных защит, которая необходима для надёжной эксплуатации следующих трансформаторов:

  1. На понижающих одиночно работающих трансформаторах мощность которых выше чем 6300 кВА;
  2. При параллельной работе данных устройств с мощностью 4000 кВА и выше. При этом таком подключении данная защита является гарантией не только быстродействия, но и селективного отключения только того устройства, которое повреждено, а не полного обесточивания питаемого электрооборудования повлекшее за собой потери в производстве продукции или в появлении бракованных изделий;
  3. Если МТЗ трансформатора не даёт необходимой чувствительности и скорости отключения, и может срабатывать с выдержкой времени более одной секунды;
  4. Если трансформаторы меньшей мощности, то применяется обычная токовая отсечка, подключенная к реле тока.

а - нормальная работа, б - при возникновении короткого замыкания между обмотками.

Принцип действия дифференциальной защиты основан на сравнении тока, а точнее, его величины. Сравнивание происходит в конце и в начале защищаемого участка. Участком в данном случае служит одна из понижающих обмоток. То есть один трансформатор тока устанавливается с высокой, а другой с низкой стороны.

На схеме видно подключение трансформаторов ТТ1 и ТТ2 соединенных последовательно. Т - это реле тока, которое остаётся в бездействии при нормальной работе, когда токи одинаковы, то есть их разность будет равна нулевому значению. Во время возникновения короткого замыкания в защищаемом участке цепи появится разность токов и реле втянется, тем самым отключив трансформатор от сети. Такой вид защиты будет срабатывать как при межвитковых, так и при межфазных замыканиях. Мгновенная работа такого защитного оборудования не требует выдержки времени, так как её быстрое срабатывание является её основным положительным фактором. Выбор вставки срабатывания реле Т должен выполнятся электротехническими лабораториями или же проектировщиками данного оборудования. Для каждого конкретного случая уровень тока втягивания реле можно изменять, чтобы не было ложных срабатываний.

Принцип действия газовой защиты трансформаторов

Газовая защита силовых трансформаторов основана на работе газового реле, которое и изображено на рисунке.

В специальном окошке при выделении газов можно увидеть пузырьки.

Реле представляет собой металлический сосуд, в котором расположены два специальных поплавка. Они врезаны в наклонный трубопровод. В свою очередь, данный трубопровод является связывающим звеном между охлаждающий корпусом имеющим радиатор и расширительным баком.

Если трансформатор находится в рабочем исправном состоянии газовое реле его наполнено трансформаторным маслом, а поплавки реле находятся в определённом нерабочем состоянии, так как внутри их масло. Поплавки непосредственно соединены с контактной группой, которая имеет аварийный и предупредительный сигнал. В нормальном состоянии контакты находятся в разомкнутом положении. При нагреве масла в случае ненормального процесса в работе из него выделяется газ, который по закону физики легче, естественно, подымается вверх. На пути газов находится газовое реле и его поплавки, которое при накоплении определённого количества поднимающего его газа начинает движение, чем и размыкает первую ступеньку. При более бурном развитии событий и второй поплавок приводится в движение и замыкает уже вторую ступень которая приводит к отключению. Взятие пробы масла и его проверка, а также химический анализ позволяет определить суть повреждения.

Из практики же не каждое срабатывание газового реле приводит к взятию проб и анализу масла, иногда при заливке может попасть в систему воздух которой во время эксплуатации будет подниматься и сможет стать причиной срабатывания данной защиты. Для этого нужно всего лишь открыть специальный краник (вентиль), находящийся на корпусе реле и выпустить воздух. Эта процедура выполняется при первом срабатывании предупредительного поплавка.

Выбор самого реле основывается на конструкции трансформатора и его габаритах. Очень часто применяются несколько типов данного устройства РГЧЗ-66, ПГ-22, BF-50, BF-80, РЗТ-50, РЗТ-80. Все они имеют смотровое окошко и герметичный корпус.

Газовая защита трансформатора и принцип действия, работы в принципе несложны стоит только один раз разобраться в них.

Максимальная токовая защита трансформатора

Основную роль отключающего устройства при повышении критического уровня тока, для трансформаторов не масляных и обладающих малой мощностью, служит предохранитель. Такой элемент защиты даёт возможность персоналу, не понимающему причины отключения, повторно произвести включение, которое может принести вред оборудованию или пожар. Предохранителями оборудованы также измерительные трансформаторы напряжения, которые расположены на подстанциях в ячейках КРУ, в таких же, как и масляные выключатели. Они предназначены для измерения напряжения в сети 6000 кВ и выше, а также для цепей защиты от повышенного или пониженного напряжения.

Для трансформаторов выбор предохранителей осуществляется из такого соотношения

Iвс - ток плавкой вставки предохранителя;

Iн. тр. - номинальный ток первичной обмотки трансформатора, в цепь которого он и устанавливается.

Предохранитель - самый простой способ защитить трансформатор от превышения тока.

Ток срабатывания максимальной защиты при установке её с низшей стороны, выбирается в соответствии с величиной нагрузки, на которую рассчитан трансформатор. Конечно же, выбирая релейную защиту данного устройства, стоит учесть также пусковые кратковременные токи, которые возникают при запусках электрических вращающихся машин. Работа таких защит основана на трансформаторах тока, вот парочка самых распространённых схем подключения.

Здесь имеется два уровня (степени) отключения, один может быть отключением от перегрузов, а другой уже срабатывает как максимальная токовая отсечка, при значительном повышении тока в контролируемых цепях, в том числе и при К.З. Цифрой 6 обозначены измерительные приборы.

Ниже представлена более усовершенствованная и развёрнутая схема уже непосредственно с подключением реле в цепи катушек маслинных выключателей.

Защита печных трансформаторов

Работа печей связана с резким нарастанием и снижением тока, поэтому дифференциальную защиту здесь применять не рекомендуется, а только газовую и тепловую. Нагревательные элементы таких печей могут работать от пониженного напряжения от 220–660 Вольт. Чаще всего здесь применяются специальные электропечные трансформаторы. Конечно же, речь идёт от печах для плавки металла, а не для приготовления пищи. В них режимы плавки меняются как питающим напряжением, так и величиной тока дуги. Печные трансформаторы должны быть оборудованы защитой от перегрузок, а также при возникновении К. З. Защиту от перегрузок устанавливают на низкой стороне, а трансформаторы тока для мгновенного срабатывания на высокой стороне. При этом уставку реле настраивают таким образом, чтобы она не отключалась при нормальных эксплуатационных К. З, ведь они работают в таком режиме и при некоторых коротких замыкания отключение не должно происходить, а только лишь поднятие электродов.

В любом случае в итоге хочется отметить что от настройки и правильности срабатывания зависят последствия ненормальных режимов работы трансформатора, а значит и стоимость последующего ремонта.

Страница 24 из 24

Глава десятая
СХЕМЫ ЗАЩИТЫ ТРАНСФОРМАТОРОВ
Принципиальные схемы защит понижающих трансформаторов, выполненные на переменном и постоянном оперативном токе, разработаны в Руководящих указаниях , действующих и в настоящее время с некоторыми изменениями, касающимися в основном дифференциальной защиты (§ 6-5 и 6-6). В этой главе приводится лишь одна из современных принципиальных схем защиты трансформатора, на примере которой можно увидеть в совокупности все основные типы защит, рассмотренные в предыдущих главах.
На рис. 10-1 приведена типовая принципиальная схема защиты в управления на переменном оперативном токе двухобмоточного трансформатора 110/10(6) кВ со схемой соединения обмоток У/Л-11 и с регулированием напряжения под нагрузкой, без выключателя на стороне ВН. Схема дается с сокращениями, которые оговариваются при описании схемы.

На поясняющей схеме (рис. 10-1, а) показаны трансформаторы тока на стороне 110 кВ типа ТВТ-110 (встроенные во вводы трансформатора) с двумя одинаковыми сердечниками ITT и 27Т, а также трансформаторы тока на стороне 10(6) кВ, например типа ТВЛМ, сердечниками класса Р (4ТТ - для релейной защиты) и 0,5 {ЗТТ - для измерительных приборов).

Условно обозначены типы установленных защит: / - дифференциальная токовая с торможением; 2 - максимальная токовая с пуском по напряжению с двумя выдержками времени (£i - на отключение выключателя В на стороне 10(6) кВ и Bz - на включение короткозамыкателя КЗ на стороне 110 кВ); 3 - газовая; 4 - максимальная токовая защита от перегрузки. Показаны коммутационные аппараты и их электромагниты управления.

Рис. 10-1. Типовая принципиальная схема защиты и управления на переменном оперативном токе двухобмоточного трансформатора 110/10(6) кВ (схема дана с сокращениями): а - поясняющая схема; б - токовые цепи; в - цепи напряжения пускового органа напряжения; г - оперативные цепи дифференциальной и максимальной токовых защит; д - оперативные цепи управления
На рис. 10-1,6 показаны трансформаторы тока и измерительные органы (токовые реле) следующих защит трансформатора:
дифференциальной токовой с торможением - ТДТа и ТДТс типа ДЗТ-11 (гл. 6);
максимальной токовой защиты от внешних к. з. - 1РТ и 2РТ типа РТ-40 (гл. 8) ;
максимальной токовой защиты от перегрузки, действующей на сигнал - реле ЗРТ типа РТ-40.
В токовые цепи защиты включено также специальное трехфазное реле тока Я Г типа РТ-40/Р-5, контакты которого используются в цепи блокировки отключения отделителя ОД (рис. 10-1, д).
На рис. 10-1, в показан пусковой орган напряжения, принцип действия которого рассмотрен в § 8-5. Он включен на шинки переменного напряжения, питающиеся от ТН 10(6) кВ. Номинальное напряжение на шинках 100 В.
На рис. 10-1, г показаны оперативные цепи дифференциальной токовой и максимальной токовой защит. Источником оперативного тока для промежуточных реле РПА и РПС (типа РП-321), а также реле времени РВ (РВМ-12) служат трансформаторы тока ITT и 2ТТ (рис. 10-1,6). Во вторичные токовые цепи этих трансформаторов тока включены первичные обмотки промежуточных насыщающихся трансформаторов тока Т{РПа и Т\РПС. Их вторичные обмотки Т2РПа и Т2РПс через выпрямительные мосты питают обмотки реле РП а и РПс при условии, что срабатывают и замыкают свои контакты реле ТДТа или ТДТС (дифференциальная защита) или РВ\ (реле времени максимальной защиты). В это же время по первичным обмоткам ТхРПк и Т\РПС или одного из них должен проходить вторичный ток к. з. После срабатывания реле РП замыкаются все его замыкающие контакты, в том числе РПА1у РПси которые осуществляют самоудерживание реле. Это сделано для обеспечения надежного и достаточно длительного замкнутого состояния контактов реле РП-321, находящихся в цепях отключения (РПА2 и РПС2 на рис. 10-1, (9). Реле РП-321 отличается от описанного в § 4-5 реле РП-341 отсутствием мощных контактов, дешунтирующих ЭО и ЭВ .
Реле времени РВ (типа РВМ-12, § 8-4) имеет в схеме три контакта:
РВ\ - замыкающий, который замыкает цепь РПА и РПс, что приводит к включению короткозамыкателя КЗ (рис. 10-1,д);
РВ2 - импульсный, с меньшей выдержкой времени, чем РВи замыкающий цепь отключения выключателя В 10(6) кВ (рис. 10-1, д);
РВз - импульсный, замыкающий с выдержкой времени около 0,5 с ту же цепь в момент включения выключателя вручную или от автоматики (АПВ); эта цепь, называемая цепью «ускорения защиты после АПВ», создается на небольшой период, около 1 с, замыканием контакта РПУ и служит для ускорения отключения устойчивого к.з. на стороне 10(6) кВ (рис. 10-1, д).
Моторчик реле времени РВ(М) может начать работать при двух одновременных условиях: прохождение тока к. з. по двум или одной из первичных обмоток промежуточных трансформаторов тока ТщРВ или Т1СРВ и замыкание цепи его обмотки. Последнее осуществляется замыкающими контактами токовых реле максимальной защиты 1РТ или 2РТ, а также размыкающими контактами реле 2РП и В (рис. 10-1,г). Реле-повторитель пускового органа напряжения 2РП в нормальном режиме находится под напряжением через замыкающий контакт реле PH (рис. 10-1, д). Размыкающий контакт 2РП в цепи РВ(М) при этом разомкнут. При к.з. срабатывает пусковой орган напряжения, замкнутый контакт PH размыкается, 2РП теряет питание, после чего контакт 2РП в цепи РВ(М) замыкается, осуществляя пуск максимальной токовой защиты по напряжению (§ 8-5). На рис. 10-1 контакты реле 2РП, как и всех других реле, показаны в положении «на складе», т. е. без напряжения и тока.
Параллельно с размыкающим контактом 2РП включен размыкающий контакт В - контакт вспомогательной цепи выключателя 10(6) кВ или реле- повторителя положения этого выключателя. Это сделано для обеспечения работы максимальной защиты при к. з. между трансформаторами тока ЗТТ - 4ТТ и выключателем В (рис. 10-1, а) в тот момент, когда на трансформатор подано напряжение со стороны ВН, а выключатель В отключен. Поскольку пусковой орган питается от ТН (рис. 10-1,а и в), а на нем в это время может быть нормальное напряжение (от другой секции), пусковой орган не сработает. Вместо него пуск максимальной защиты осуществит размыкающий контакт В, замкнутый при отключенном положении выключав теля В 10(6) кВ. Напомним, что рассматриваемое повреждение находится вне зоны действия дифференциальной защиты трансформатора.
На рис. 10-1,5 представлена основная часть схемы оперативных цепей управления. Шинки управления 1ШУ и 2ШУ имеют напряжение 220 В и нормально питаются от ТСН 10/0,22 кВ (или 6/0,22 кВ). Они называются шинками обеспеченного питания, так как при потере основного источника автоматически переключаются на другой: либо на ТСН соседнего силового трансформатора, либо на свой 77/ 10(6) кВ (через промежуточный трансформатор 0,1/0,22 кВ) . От шинок 1ШУ и 2ШУ питается 2РП - реле- повторитель пускового органа напряжения (см. выше), реле-повторители положения коммутационных аппаратов (на схеме не показаны), а также зарядное устройство УЗ (§ 4-6).
Энергия предварительно заряженных конденсаторов 1БК-5БК используется для выполнения следующих операций:
срабатывание общего выходного промежуточного реле 1РП при действии отключающего элемента газовой защиты РГОу а также дифференциальной и максимальной защит через реле ЯЯА и РПС (рис. 10-1,г); цепи отключения газовой защиты описаны в § 7-2;
отключение выключателя В 10(6) кВ; его электромагнит отключения ЭОВ может подключаться к 2БК или контактом РВ2 первой ступени максимальной токовой защиты или контактом общего выходного реле 1РП2 (для отключения В при внутренних повреждениях трансформаторов) или контактом PBz по цепи «ускорения защиты после АПВ» ;
включение короткозамыкателя КЗ; его электромагнит включения ЭВКЗ подключается к ЗБК после срабатывания общего выходного реле 1РП и замыкания контакта /Р/73;
срабатывание реле ЗРП, разрешающего отключение отделителя ОД в бестоковую паузу (§ 4-4); наступление бестоковой паузы фиксируется размыкающими контактами токовых реле РТ и РТБУ которые замыкаются при отсутствии тока через трансформаторы тока ITT - 2ТТ и 5ТТ соответственно, а также контактом вспомогательной цепи короткозамыкателя КЗ или контактом его реле-повторителя, который замыкается после включения короткозамыкателя;
отключение отделителя ОД; его электромагнит отключения ЭООД подключается к 5БК после замыкания контакта реле ЗРП.
На рис. 10-1, д показана часть цепей разряда конденсаторов 1БК-5БК на резистор R сопротивлением примерно 3000 Ом через переключатель КР и испытательный блок ИБ. Разряд конденсаторов производится для обеспечения безопасности работ в цепях защиты (§ 4-6). При разряде кратковременно загорается лампа JIP.
На рис. 10-1 не показаны цепи управления коммутационными аппаратами, цепи сигнализации, в том числе газовой защиты и максимальной токовой защиты от перегрузки, не показаны цепи отдельной газовой защиты устройства РПН.
В рассмотренной типовой схеме имеются некоторые отступления от принципов выполнения релейной защиты трансформаторов, рассмотренных в гл. 4, а именно: установлено одно выходное реле, общее для всех защит, и использован только один вид оперативного тока (предварительно заряженные конденсаторы) для автоматического отключения выключателя 10(6) кВ и включения короткозамыкателя 110 кВ. При этом заряд конденсаторов осуществляется только от одного зарядного устройства, питающегося от ТСН, а второе зарядное устройство (токовое, см. рис. 4-9) - не предусмотрено. Это понижает надежность срабатывания защиты, поскольку неисправность единственного выходного реле или отсутствие заряда конденсаторов приводит к отказу всех защит и повреждению трансформатора.

СПИСОК ЛИТЕРАТУРЫ

Правила устройства электроустановок. - М.: Атомиздат, 1978-80.
Федосеев А. М. Релейная защита электрических систем -М.: Энергия» 1976.
Чернобровое Н. В. Релейная защита.- 5-е изд.- М.: Энергия, 1974.
Инструкция по эксплуатации трансформаторов/Сост. Н. П. Фуфурин.-
е изд., перераб. и доп. - М.: Энергия, 1978.
Ill абад М. А. Расчеты релейной защиты и автоматики распределительных сетей.- 2-е изд.- Л.: Энергия, 1976.
Ульянов С. А. Электромагнитные переходные процессы в электрических системах.- М.: Энергия, 1970.
Крючков И. П., Кувшинский Н. Н., Неклепаев Б. Н. Электрическая часть электростанций и подстанций: Справочные материалы.- 3-е изд. перераб. и доп.- М.: Энергия, 1978.
Шабад М. А. Приближенный расчет токов к. з. и самозапуска для релейной защиты понижающих трансформаторов РПН 110 и 35 кВ распределительных сетей.-Электрические станции, 1976, № 11.
Найфельд М. Р., Спеваков П. И. Сопротивления трансформаторов в режиме однофазного замыкания в сетях напряжением до 1000 В.- Промышленная энергетика, 1968, № 11.
Спеваков П. И. Проверка на автоматическое отключение линий в сетях до 1000 В. - М.: Энергия, 1971.
Голубев М. J1. Расчет токов короткого замыкания в электросетях 0,4- 35 кВ. 2-е изд.- М.: Энергия, 1980.
Инструкция по перезарядке предохранителей.-М.: Минэнерго СССР*
1971.
Гогичайшвили П. Ф. Подстанции без выключателей на высшем напряжении.- М.: Высшая школа, 1965.
Сборник директивных материалов по эксплуатации энергосистем (Электротехническая часть). - М.: Минэнерго СССР, 1978.
Беркович М. А., Семенов В. А. Основы техники и эксплуатации релей- ной защиты.-5-е изд.-М.: Энергия, 1971.
Шабад М. А. Особенности расчетов и выполнения максимальных токовых защит в распределительных сетях 10; 35 и 110 кВ сельскохозяйственных районов.- М.: Энергия. 1969.
Зотов А. Ям Гринин Ф. Н., Повсринов А. И. О повышении надежности стреляющих предохранителей на подстанциях 35/6(10) кВ. - Электрические станции, 1978, № 4.
Вейц И. Е., Кутузова М. С. Передвижная трансформаторная подстанция 110/10 кВ мощностью 2500 кВ-А на автоходу. - Электрические станции 1975, № 10.
Реле защиты/ В. С. Алексеев, Г. П. Варганов, Б. И. Панфилов, Р. 3. Розенблюм.- М.: Энергия, 1976.
Гельфанд Я. С., Шабад М. А. Повышение надежности защиты трансформаторов 110 кВ упрощенных подстаиций.- Электрические станции, 1975, № 4.
Гельфанд Я. С. Релейная защита распределительных сетей -М.: Энергия, 1975.
Дроздов А. Д., Платонов В. В. Реле дифференциальных защит элементов энергосистем.-М.: Энергия, 1968.
Руководящие указания по релейной защите. Вып. 4. Защита понижающих трансформаторов и автотрансформаторов.-М.: Госэнергоиздат, 1962.
Сулимова М. И. Газовая защита с реле РГЧЗ-66.-М.: Энергия, 1976.
Гельфанд Я. С., Голубев М. J1., Царев М. И. Релейная защита и электроавтоматика на переменном оперативном токе.-2-е изд.-М.: Энергия, 1973.
Применение защиты МТЗ-М с магнитными трансформаторами тока/М. Н. Григорьев, А. А. Кудрявцев, А. П. Кузнецов, Е. И. Окунцов.-Электрические станции, 1974, № 10.
Голубев М. J1. Вторичные цепи на подстанциях с переменным оперативным током. - М.: Энергия, 1977.
Шабад М. А. Согласование по чувствительности защит разных типов в распределительных сетях.- Электричество, 1974, № 3.
Байтер И. И. Релейная защита и автоматика питающих элементов собственных нужд тепловых электростанций.- 2-е изд.- М.: Энергия, 1975.
Шабад М. А. Автоматика электрических сетей 6-35 кВ в сельской местности. - Л.: Энергия, 1979.

В процессе эксплуатации в обмотках трансформаторов могут возникать КЗ между фазами, замыкание одной или двух фаз на землю, замыкание между витками одной фазы и замыкания между обмотками разных напряжений. На вводах трансформаторов и автотрансформаторов, ошиновке и в кабелях могут также возникать КЗ между фазами и на землю. В эксплуатации могут происходить нарушения нормальных режимов работы трансформаторов, к которым относятся: прохождение через трансформатор или автотрансформатор сверхтоков при повреждении других связанных с ними элементов, перегрузка, выделение из масла горючих газов, понижение уровня масла, повышение его температуры. В зависимости от опасности повреждения для нарушения нормального режима трансформатора, защита, фиксирующая нарушение, действует на сигнал, разгрузку или отключение трансформатора.

По количеству обмоток трансформаторы делятся на двух и трёхобмоточные. Весьма часто используются трансформаторы с расщеплённой вторичной обмоткой – для уменьшения токов КЗ, вместо одной вторичной обмотки на полную мощность, наматываются 2, или даже 3 обмотки НН меньшей мощности.

Обмотки трёхфазных трансформаторов соединяются в схему звезды (Υ) или треугольника (∆). В схеме звезды кроме фазных выводов обычно выводится нейтраль. Вывод нейтрали либо заземляется наглухо, либо заземляется через разрядник или дугогасящий реактор в сетях с компенсированной нейтралью. Иногда вывод нейтрали остается незаземлённым.

Каждая пара обмоток трансформатора образует группу соединения, основные из них: Υ/Υ-12, Υ/∆-11. Кроме схемы соединения, в названии группы указывается число, показывающее сдвиг напряжения (или тока) по фазе между вторичной и первичной обмотками. Число, показывающее сдвиг по фазе вторичной обмотки соответствует положению часовой стрелки (низшее напряжение) относительно минутной (высшее напряжение) установившейся в положении 12 часов. Наиболее часто используется группа Υ/Υ–12, в этой группе вторичное напряжение совпадает по фазе с первичным – часовая и минутная стрелки на 12 часов, или Υ/∆–11 – часовая стрелка находится в положении 11 часов, а минутная – на 12. Вторичное напряжение опережает первичное на угол 30°.

Трансформаторы могут присоединяться к сети с помощью:

Выключателей;

Плавких предохранителей или открытых плавких вставок;

Автоматических отделителей или выключателей нагрузки, предназначенных для отключения трансформатора в бестоковую паузу.

Присоединение трансформаторов к сети через плавкие предохранители используется в схемах упрощенных подстанций 6-35 кВ при отсутствии аппаратуры на стороне высокого напряжения трансформатора.

Имеются предохранители ПК-10, ПКТ-10, ПКИ-10, ПСН-10., ПСН-35. Ток плавкой вставки зависит от мощности трансформатора, например: см. таблицу 5.1.

Предохранители ПСН-35 применяются для трансформаторов напряжением 35 кВ малой мощности (до 1000 кВА), обычно на передвижных подстанциях. С помощью таких предохранителей практически невозможно обеспечить селективность защиты трансформатора с защитой ввода, поэтому они согласовываются непосредственно с защитой отходящих от шин линий 6-10 кВ. Были также разработаны, но не нашли применения, стреляющие предохранители 110 кВ типа ПС-110У1.

Плавкие предохранители рассчитаны на отключение тока КЗ в трансформаторе, поэтому они проверяются по номинальному отключаемому току КЗ. Номинальный ток отключения для предохранителей 6-10 кВ может быть в пределах 2,5÷40 кА. Кроме того, требуется выбрать номинальное напряжение предохранителя. Одинаково недопустимо устанавливать предохранитель напряжением 6 кВ на трансформатор 10 кВ, и предохранитель 10 кВ на трансформатор напряжением 6 кВ. В первом случае может произойти перекрытие предохранителя по поверхности, а во втором может не погаснуть дуга внутри предохранителя.

Мощность трансфор матора, кВА

Номинальный ток, А

трансформатора на стороне

плавкой вставки на стороне

0,4 кВ

0,4 кВ

Кроме рассмотренных выше предохранителей, которые обеспечивают отключение короткого замыкания, ранее применялись открытые плавкие вставки для трансформаторов напряжением 110 кВ. Трансформатор подключался к линии через тонкие алюминиевые провода, при перегорании которых возникала электрическая дуга. Открытые плавкие вставки не могли отключить ток КЗ, после их перегорания возникало короткое замыкание на стороне ВН, которое должно было отключаться защитой питающей линии.


Рис. 5.1. Схемы присоединения понижающего трансформатора к питающей сети:

с помощью выключателя (а ) и отделителя с короткозамыкателем (б ив )

При высшем напряжении 35 кВ и более, наиболее распространенным для трансформаторов мощностью более l MBА способом подключения трансформатора отпаечной и тупиковой подстанции к линии является подключение через автоматический отделитель (ОД ) с установкой короткозамыкителя (КЗ) (рис. 5.1б ,в ). Короткозамыкатель устанавливается в 2-х фазах при напряжении 35 кВ, и в одной фазе при напряжении 110 кВ и выше. В этом случае при повреждении в трансформаторе его релейная защита даёт команду на включение КЗ, после чего срабатывает релейная защита питающей линии, и отключается выключатель (В ) этой линии. Наступает бестоковая пауза, во время которой автоматика даёт команду на отключениеОД , а линия включается снова от устройства АПВ.

Наиболее предпочтительным является присоединение трансформатора через выключатель (рис. 5.1, а ). На рисунке показан выключатель со встроенными в него трансформаторами тока (ТВ).

При наличии у защищаемого трансформатора встроенных трансформаторов тока (TВT) требуется установить более дешевый выключатель без встроенных ТТ, стоимость установки которого может оказаться соизмеримой с установкой короткозамыкателя и отделителя. Большинство строящихся в настоящее время подстанций комплектуются именно выключателями на стороне ВН.

При подключении трансформатора по схемам рис. 5.1, можно полностью реализовать требования к защитам трансформатора, указанным в следующем подразделе.

Как известно, силовой трансформаторы (далее - СТ ) – это наиболее ответственные и дорогие элементы в схемах любых электрических подстанций, поэтому крайне необходимо грамотно подходить в организации их защиты. Только такой подход позволяет полностью исключить возможность повреждения от всех видов коротких замыканий и ненормальных режимов.


Виды повреждений . В процессе эксплуатации трансформаторов могут возникать следующие виды повреждений:

3-х и 2-х фазные КЗ на стороне низкого напряжения;
- однофазные замыкания на корпус на стороне высокого напряжения;
- межвитковые замыкания;
- короткие междуфазные замыкания за трансформатором;
- короткие однофазные замыкания за трансформатором.


Разновидности защит . Для защиты СТ , имеющих мощность более 1МВА, от внутренних повреждений и различных ненормальных режимов сегодня применяются следующие ее разновидности:

Продольная дифференциальная защита , которая предохраняет от всех видов КЗ, как в обмотках, так и на их выводах. Как правило, устанавливается на трансформаторы мощностью 6,3МВА и выше. Зона действия ограничивается трансформаторами тока на высокой и низкой сторонах трансформатора.

Наиболее совершенный способом защиты трансформаторов из всех, на настоящее время известных, является релейная защита, построенная на дифференциальном принципе.

Для дифференциальной защиты характерна избирательность действия или селективность. Это означает срабатывание защиты в районе электроустановки между трансформаторами тока, на вводе высшего напряжения, до силового трансформатора и на вводе отходящей линии низшего напряжения, после силового трансформатора

К плюсам можно отнести небольшую величину тока срабатывания. Для трансформаторов, которые имеют мощность от 63мВА, ток входит в границы 0,1–0,3А от номинального тока, такая величина тока срабатывания обеспечивает коэффициент чувствительности 1,5 –2,0 к витковым и межкатушечным замыканиям в переплетенных и обычных обмотках. Время срабатывания защиты очень короткое (15–20мс). Высокая степень чувствительности и очень короткое время реагирования дифзащиты, способствует уменьшению величины повреждения и сокращает время на восстановление оборудования.

Продольная дифференциальная защита устанавливается в обязательном порядке для трансформаторов мощностью от 6300кВа, она служит для предупреждения выхода из строя оборудования, вследствие многофазных замыканий внутри обмоток и на выводах.

Дифференциальная защита трансформаторов обязательна к установке и для параллельно работающих трансформаторов мощностью от 4000кВа. Трансформаторы небольшой мощности на 1000кВа, комплектуются дифзащитой, при отсутствии газовой защиты, и в том случае если МТЗ рассчитана на большую выдержку времени от 0,5сек, а токовая отсечка имеет низкую степень чувствительности.

Дифференциальная продольная защита с циркулирующими токами, отключает силовой трансформатор, мгновенно после неисправности, без выдержки времени.

Дифференциальная защита – принцип действия


Принцип действия дифференциальной защиты построен на применении первого закона Киргофа. Защищаемый объект принимается за узел, ток фиксируется полностью на всех ветвях, соединяющих объект с внешней электрической сетью.

При повреждении на отходящей ветви, сумма токов, входящих и отходящих из узла, равна нулю.

При повреждении объекта, в случае КЗ, сумма токов в ветвях будет равна токам короткого замыкания.

Диффзащита трансформатора отличается от дифференциальной защиты высоковольтных линий и генераторов наличием неравенства первичных токов разных обмоток трансформаторов и несовпадением по фазе.

Поперечная дифференциальная защита линий электропередач

Защита построена идентично продольной и основана на принципе сравнивания токов, только для защиты ВЛ и КЛ, установка трансформаторов тока выполняется на разных линиях, питание, которых осуществляется от одного источника, например, от одного выключателя нагрузки, а не на концах участка линии. Трансформаторы тока должны быть идентичны по своим параметрам, их коэффициент трансформации должен быть одинаков.


После отключения одной из линий, блок-контактами высоковольтных выключателей, дифференциальная защита выводится из работы, это происходит для того, чтобы осуществить устранение неселективности действия при внешнем КЗ.

Принцип действия поперечной дифференциальной защиты, позволяет обходиться без настройки защиты на замедление действия, значит, при КЗ линии, произойдет мгновенное отключение, при КЗ в противоположных концах линии наблюдается каскадное (поочередное) действие дифференциальной защиты.


Основные условия выбора тока срабатывания:

  1. При внешних КЗ, не должно происходить срабатывание защиты от максимально высокого тока небаланса.
  2. При отключении одной из подключенных параллельно линий электропередач, если вторая линия полностью, на 100% загружена, не должна осуществляться работа защиты.
  3. Чувствительность защиты зависит от КЗ на границе каскадного действия рядом с точкой равной чувствительности, в которой наблюдается равенство токов в реле комплектов защит обеих линий.

Дифференциальная защита генераторов

Защита генераторов, в статоре машины, действует на погашение магнитного поля генератора (отключением автомата АГП), с его последующим отключением от питающей сети, при помощи выключателя нагрузки самого генератора или выключателя на стороне блока ВН.

Существует 2 типа дифференциальной защиты генераторов:

  1. Продольная дифференциальная защита
  2. Поперечная дифференциальная защита.

Принцип действия дифференциальной защиты генераторов идентичен принципу действия дифференциальной защиты трансформаторов и линий. Основывается на разности токов, текущих в параллельно подключенных ветвях.

Реле включается в цепь с трансформатором тока, в перемычку между нейтралями параллельных обмоток статора.



Принцип действия построен на сравнивании токов следующих со стороны выводов генератора.

Зона действия защиты распространяется на: обмотки генератора, выводы обмотки статора и на шины, вплоть до распределительного устройства.