Темная материя: от начальных условий до образования структуры Вселенной. Темная материя во вселенной

Статьях цикла мы рассмотрели устройство видимой Вселенной. Поговорили о ее структуре и частицах, которые формируют эту структуру. О нуклонах, играющих главную роль, поскольку именно из них состоит всё видимое вещество. О фотонах, электронах, нейтрино, а также о второстепенных актерах, занятых во вселенском спектакле, что разворачивается 14 миллиардов лет, прошедших с момента Большого взрыва. Казалось бы, рассказывать больше не о чем. Но это не так. Дело в том, что видимое нами вещество — лишь малая часть того, из чего состоит наш мир. Все остальное — нечто, о чем мы почти ничего не знаем. Это загадочное «нечто» получило название темной материи.

Если бы тени предметов зависели не от величины сих последних,
а имели бы свой произвольный рост, то, может быть,
вскоре не осталось бы на всем земном шаре ни одного светлого места.

Козьма Прутков

Что будет с нашим миром?

После открытия в 1929 году Эдвардом Хабблом красного смещения в спектрах удаленных галактик стало ясно, что Вселенная расширяется. Одним из вопросов, возникших в этой связи, был следующий: как долго будет продолжаться расширение и чем оно закончится? Силы гравитационного притяжения, действующие между отдельными частями Вселенной, стремятся затормозить разбегание этих частей. К чему торможение приведет — зависит от суммарной массы Вселенной. Если она достаточно велика, силы тяготения постепенно остановят расширение и оно сменится сжатием. В результате Вселенная в конце концов опять «схлопнется» в точку, из которой когда-то начала расширяться. Если же масса меньше некоторой критической массы, то расширение будет продолжаться вечно. Обычно принято говорить не о массе, а о плотности, которая связана с массой простым соотношением, известным из школьного курса: плотность есть масса, деленная на объем.

Расчетное значение критической средней плотности Вселенной примерно 10 -29 граммов на кубический сантиметр, что соответствует в среднем пяти нуклонам на кубический метр. Следует подчеркнуть, что речь идет именно о средней плотности. Характерная концентрация нуклонов в воде, земле и в нас с вами составляет около 10 30 на кубический метр. Однако в пустоте, разделяющей скопления галактик и занимающей львиную долю объема Вселенной, плотность на десятки порядков ниже. Значение концентрации нуклонов, усредненное по всему объему Вселенной, десятки и сотни раз измеряли, тщательно подсчитывая разными методами количества звезд и газопылевых облаков. Результаты таких измерений несколько различаются, но качественный вывод неизменен: значение плотности Вселенной едва дотягивает до нескольких процентов от критической.

Поэтому вплоть до 70-х годов XX столетия общепринятым был прогноз о вечном расширении нашего мира, которое неизбежно должно привести к так называемой тепловой смерти. Тепловая смерть — это такое состояние системы, когда вещество в ней распределено равномерно и разные ее части имеют одну и ту же температуру. Как следствие, невозможна ни передача энергии от одной части системы к другой, ни перераспределение вещества. В такой системе ничего не происходит и никогда уже не сможет произойти. Наглядной аналогией служит вода, разлитая по какой-либо поверхности. Если поверхность неровная и есть хотя бы небольшие перепады высот, вода перемещается по ней с более высоких мест на более низкие и в конце концов собирается в низинах, образуя лужи. Движение прекращается. Оставалось утешаться только тем, что тепловая смерть наступит через десятки и сотни миллиардов лет. Следовательно, еще очень-очень долго об этой мрачной перспективе можно не задумываться.

Однако постепенно стало ясно, что истинная масса Вселенной намного больше видимой массы, заключенной в звездах и газопылевых облаках и, скорее всего, близка к критической. А возможно, в точности равна ей.

Свидетельства существования темной материи

Первое указание на то, что с подсчетом массы Вселенной что-то не так, появилось в середине 30-х годов XX века. Швейцарский астроном Фриц Цвикки измерил скорости, с которыми галактики скопления Волосы Вероники (а это одно из самых больших известных нам скоплений, оно включает в себя тысячи галактик) движутся вокруг общего центра. Результат получился обескураживающим: скорости галактик оказались гораздо больше, чем можно было ожидать, исходя из наблюдаемой суммарной массы скопления. Это означало, что истинная масса скопления Волосы Вероники гораздо больше видимой. Но основное количество материи, присутствующей в этой области Вселенной, остается по каким-то причинам невидимой и недоступной для прямых наблюдений, проявляя себя только гравитационно, то есть только как масса.

О наличии скрытой массы в скоплениях галактик свидетельствуют также эксперименты по так называемому гравитационному линзированию. Объяснение этого явления следует из теории относительности. В соответствии с ней, любая масса деформирует пространство и подобно линзе искажает прямолинейный ход лучей света. Искажение, которое вызывает скопление галактик, столь велико, что его легко заметить. В частности, по искажению изображения галактики, которая лежит за скоплением, можно рассчитать распределение вещества в скоплении-линзе и измерить тем самым его полную массу. И оказывается, что она всегда во много раз больше, нежели вклад видимого вещества скопления.

Через 40 лет после работ Цвикки, в 70-е годы, американский астроном Вера Рубин изучала скорости вращения вокруг галактического центра вещества, расположенного на периферии галактик. В соответствии с законами Кеплера (а они напрямую следуют из закона всемирного тяготения), при движении от центра галактики к ее периферии скорость вращения галактических объектов должна убывать обратно пропорционально квадратному корню из расстояния до центра. Измерения же показали, что для многих галактик эта скорость остается почти постоянной на весьма значительном удалении от центра. Эти результаты можно истолковать только одним способом: плотность вещества в таких галактиках не убывает при движении от центра, а остается почти неизменной. Поскольку плотность видимого вещества (содержащегося в звездах и межзвездном газе) быстро падает к периферии галактики, недостающую плотность должно обеспечивать нечто, чего мы по каким-то причинам увидеть не можем. Для количественного объяснения наблюдаемых зависимостей скорости вращения от расстояния до центра галактик требуется, чтобы этого невидимого «чего-то» было примерно в 10 раз больше, чем обычного видимого вещества. Это «нечто» получило название «темная материя» (по-английски «dark matter ») и до сих пор остается самой интригующей загадкой в астрофизике.

Еще одно важное свидетельство присутствия темной материи в нашем мире приходит из расчетов, моделирующих процесс формирования галактик, который начался примерно через 300 тысяч лет после начала Большого взрыва. Эти расчеты показывают, что силы гравитационного притяжения, которые действовали между разлетающимися осколками возникшей при взрыве материи, не могли скомпенсировать кинетической энергии разлета. Вещество просто не должно было собраться в галактики, которые мы тем не менее наблюдаем в современную эпоху. Эта проблема получила название галактического парадокса, и долгое время ее считали серьезным аргументом против теории Большого взрыва. Однако если предположить, что частицы обычного вещества в ранней Вселенной были перемешаны с частицами невидимой темной материи, то в расчетах всё становится на свои места и концы начинают сходиться с концами — формирование галактик из звезд, а затем скоплений из галактик становится возможным. При этом, как показывают вычисления, сначала в галактики скучивалось огромное количество частиц темной материи и только потом, за счет сил тяготения, на них собирались элементы обычного вещества, общая масса которого составляла лишь несколько процентов от полной массы Вселенной. Получается, что знакомый и, казалось бы, изученный до деталей видимый мир, который мы совсем недавно считали почти понятым, — только небольшая добавка к чему-то, из чего в действительности состоит Вселенная. Планеты, звезды, галактики да и мы с вами — всего лишь ширма для громадного «нечто», о котором мы не имеем ни малейшего представления.

Фотофакт

Скопление галактик (в левой нижней части участка, обведенного кружком) создает гравитационную линзу. Она искажает форму расположенных за линзой объектов — вытягивая их изображения в одном направлении. По величине и направлению вытягивания международная группа астрономов из Южной Европейской обсерватории, возглавляемая учеными из парижского Института астрофизики, построила распределение масс, которое и показано на нижнем изображении. Как видно, в скоплении сосредоточено гораздо больше массы, нежели удается разглядеть в телескоп.

Охота на темные массивные объекты — дело небыстрое, и на фотографии результат выглядит не самым эффектным образом. В 1995 году телескоп «Хаббл» заметил, что одна из звездочек Большого Магелланова облака вспыхнула ярче. Это свечение продолжалось три с лишним месяца, но потом звезда вернулась к своему естественному состоянию. А шесть лет спустя рядом со звездой появился какой-то едва светящийся объект. Это и был холодный карлик, который, проходя на расстоянии 600 световых лет от звезды, создал гравитационную линзу, усиливающую свет. Расчеты показали, что масса этого карлика составляет всего 5-10% от массы Солнца.

Наконец, общая теория относительности однозначно связывает темп расширения Вселенной со средней плотностью вещества, заключенного в ней. В предположении о том, что средняя кривизна пространства равна нулю, то есть в нем действует геометрия Эвклида, а не Лобачевского (что надежно проверено, например, в экспериментах с реликтовым излучением), эта плотность должна быть равна 10 -29 граммам на кубический сантиметр. Плотность же видимого вещества примерно в 20 раз меньше. Недостающие 95% от массы Вселенной и есть темная материя. Обратите внимание, что измеренное из скорости расширения Вселенной значение плотности равно критическому. Два значения, независимо вычисленные совершенно разными способами, совпали! Если в действительности плотность Вселенной в точности равна критической, это не может быть случайным совпадением, а представляет собой следствие какого-то фундаментального свойства нашего мира, которое еще предстоит понять и осмыслить.

Что это?

Что же мы знаем сегодня о темной материи, составляющей 95% массы Вселенной? Почти ничего. Но что-то всё же знаем. Прежде всего, нет никаких сомнений в том, что темная материя существует — об этом неопровержимо свидетельствуют факты, приведенные выше. А еще нам доподлинно известно, что темная материя существует в нескольких формах. После того как к началу XXI века в результате многолетних наблюдений в экспериментах SuperKamiokande (Япония) и SNO (Канада) было установлено, что у нейтрино масса есть, стало ясно, что от 0,3% до 3% из 95% скрытой массы заключается в давно знакомых нам нейтрино — пусть масса их чрезвычайно мала, но количество во Вселенной примерно в миллиард раз превышает количество нуклонов: в каждом кубическом сантиметре содержится в среднем 300 нейтрино. Оставшиеся 92-95% состоят из двух частей — темной материи и темной энергии. Незначительную долю темной материи составляет обычное барионное вещество, построенное из нуклонов, за остаток отвечают, по-видимому, какие-то неизвестные массивные слабовзаимодействующие частицы (так называемая холодная темная материя). Баланс энергий в современной Вселенной представлен в таблице, а рассказ о ее трех последних графах — ниже.

Барионная темная материя

Небольшая (4-5%) часть темной материи — это обычное вещество, которое не испускает или почти не испускает собственного излучения и поэтому невидимо. Существование нескольких классов таких объектов можно считать экспериментально подтвержденным. Сложнейшие эксперименты, основанные всё на том же гравитационном линзировании, привели к открытию так называемых массивных компактных галообъектов, то есть расположенных на периферии галактических дисков. Для этого потребовалось следить за миллионами удаленных галактик в течение нескольких лет. Когда темное массивное тело проходит между наблюдателем и далекой галактикой, ее яркость на короткое время уменьшается (или увеличивается, поскольку темное тело выступает в роли гравитационной линзы). В результате кропотливых поисков такие события были выявлены. Природа массивных компактных галообъектов ясна не до конца. Скорее всего, это либо остывшие звезды (коричневые карлики), либо планетоподобные объекты, не связанные со звездами и путешествующие по галактике сами по себе. Еще один представитель барионной темной материи — недавно обнаруженный в галактических скоплениях методами рентгеновской астрономии горячий газ, который не светится в видимом диапазоне.

Небарионная темная материя

В качестве главных кандидатов на небарионную темную материю выступают так называемые WIMP (сокращение от английского Weakly Interactive Massive Particles — слабовзаимодействующие массивные частицы). Особенность WIMP состоит в том, что они почти никак не проявляют себя во взаимодействии с обычным веществом. Именно поэтому они и есть самая настоящая невидимая темная материя, и именно поэтому их чрезвычайно сложно обнаружить. Масса WIMP должна быть как минимум в десятки раз больше массы протона. Поиски WIMP ведутся во многих экспериментах в течение последних 20-30 лет, но, несмотря на все усилия, они до сих пор обнаружены не были.

Одна из идей состоит в том, что если такие частицы существуют, то Земля в своем движении вместе с Солнцем по орбите вокруг центра Галактики должна лететь сквозь дождь, состоящий из WIMP. Несмотря на то что WIMP представляет собой чрезвычайно слабо взаимодействующую частицу, какая-то очень малая вероятность провзаимодействовать с обычным атомом у нее всё же есть. При этом в специальных установках — очень сложных и дорогостоящих — может быть зарегистрирован сигнал. Количество таких сигналов должно меняться в течение года, поскольку, двигаясь по орбите вокруг Солнца, Земля меняет свою скорость и направление движения относительно ветра, состоящего из WIMP. Экспериментальная группа DAMA, работающая в итальянской подземной лаборатории Гран-Сассо, сообщает о наблюдаемых годичных вариациях скорости счета сигналов. Однако другие группы пока не подтверждают этих результатов, и вопрос, по существу, остается открытым.

Другой метод поиска WIMP основан на предположении о том, что в течение миллиардов лет своего существования различные астрономические объекты (Земля, Солнце, центр нашей Галактики) должны захватывать WIMP, которые накапливаются в центре этих объектов, и, аннигилируя друг с другом, рождать поток нейтрино. Попытки детектирования избыточного нейтринного потока из центра Земли в направлении к Солнцу и к центру Галактики были предприняты на подземных и подводных нейтринных детекторах MACRO, LVD (лаборатория Гран-Сассо), NT-200 (озеро Байкал, Россия), SuperKamiokande, AMANDA (станция Скотт-Амундсен, Южный полюс), но пока не привели к положительному результату.

Эксперименты по поиску WIMP активно проводят также на ускорителях элементарных частиц. В соответствии со знаменитым уравнением Эйнштейна Е=mс 2 , энергия эквивалентна массе. Следовательно, ускорив частицу (например, протон) до очень высокой энергии и столкнув ее с другой частицей, можно ожидать рождения пар других частиц и античастиц (в том числе WIMP), суммарная масса которых равна суммарной энергии сталкивающихся частиц. Но и ускорительные эксперименты пока не привели к положительному результату.

Темная энергия

В начале прошлого века Альберт Эйнштейн, желая обеспечить космологической модели в общей теории относительности независимость от времени, ввел в уравнения теории так называемую космологическую постоянную, которую обозначил греческой буквой «лямбда» — Λ. Эта Λ была чисто формальной константой, в которой сам Эйнштейн не видел никакого физического смысла. После того как было открыто расширение Вселенной, надобность в ней отпала. Эйнштейн очень жалел о своей поспешности и называл космологическую постоянную Λ своей самой большой научной ошибкой. Однако спустя десятилетия выяснилось, что постоянная Хаббла, которая определяет темп расширения Вселенной, меняется со временем, причем ее зависимость от времени можно объяснить, подбирая величину той самой «ошибочной» эйнштейновской постоянной Λ, которая вносит вклад в скрытую плотность Вселенной. Эту часть скрытой массы и стали называть «темная энергия».

О темной энергии можно сказать еще меньше, чем о темной материи. Во-первых, она равномерно распределена по Вселенной, в отличие от обычного вещества и других форм темной материи. В галактиках и скоплениях галактик ее столько же, сколько вне их. Во-вторых, она обладает несколькими весьма странными свойствами, понять которые можно, лишь анализируя уравнения теории относительности и интерпретируя их решения. Например, темная энергия испытывает антигравитацию: за счет ее присутствия темп расширения Вселенной растет. Темная энергия как бы расталкивает саму себя, ускоряя при этом и разбегание обычной материи, собранной в галактиках. А еще темная энергия обладает отрицательным давлением, благодаря которому в веществе возникает сила, препятствующая его растяжению.

Главный кандидат на роль темной энергии — вакуум. Плотность энергии вакуума не изменяется при расширении Вселенной, что и соответствует отрицательному давлению. Еще один кандидат — гипотетическое сверхслабое поле, получившее название квинтэссенция. Надежды на прояснение природы темной энергии связывают прежде всего с новыми астрономическими наблюдениями. Продвижение в этом направлении, несомненно, принесет человечеству радикально новые знания, поскольку в любом случае темная энергия должна представлять собой совершенно необычную субстанцию, абсолютно непохожую на то, с чем имела дело физика до сих пор.

Итак, наш мир на 95% состоит из чего-то, о чем мы почти ничего не знаем. Можно по-разному относиться к такому не подлежащему никакому сомнению факту. Он может вызывать тревогу, которая всегда сопутствует встрече с чем-то неизвестным. Или огорчение, оттого что такой долгий и сложный путь построения физической теории, описывающей свойства нашего мира, привел к констатации: большая часть Вселенной скрыта от нас и неизвестна нам.

Но большинство физиков сейчас испытывают воодушевление. Опыт показывает, что все загадки, которые ставила перед человечеством природа, рано или поздно разрешались. Несомненно, разрешится и загадка темной материи. И это наверняка принесет совершенно новые знания и понятия, о которых мы пока не имеем никакого представления. И возможно, мы встретимся с новыми загадками, которые, в свою очередь, также будут разгаданы. Но это будет совсем другая история, которую читатели «Химии и жизни» смогут прочесть не раньше, чем через несколько лет. А может быть, и через несколько десятилетий.

Мы стоим на пороге открытия, способного изменить суть наших представлений о Мире. Речь идет о природе темной материи. В последние годы астрономия сделала важнейшие шаги в наблюдательном обосновании темной материи, и сегодня существование такого вещества во Вселенной можно считать твердо установленным фактом. Особенность ситуации состоит в том, что астрономы наблюдают структуры, состоящие из неизвестного физикам вещества. Так возникала проблема идентификации физической природы этой материи.

1. "Принеси то, не знаю что"

Современной физике элементарных частиц неизвестны частицы, обладающие свойствами темного вещества. Требуется расширение Стандартной модели. Но как, в каком направлении двигаться, что и где искать? Слова из известной русской сказки, вынесенные в заголовок этого раздела, как нельзя лучше отражают текущую ситуацию.

Физики ищут неизвестные частицы, имея только общие представления о свойствах наблюдаемой материи. Каковы же эти свойства?

Мы знаем лишь то, что темное вещество взаимодействует со светящимся (барионами) гравитационным образом и представляет собой холодную среду с космологической плотностью, в несколько раз превышающей плотность барионов. Вследствие столь простых свойств темная материя прямо влияет на развитие гравитационного потенциала Вселенной. Контраст ее плотности усиливался с течением времени, приводя к образованию гравитационно-связанных систем гало темного вещества.

Следует подчеркнуть, что этот процесс гравитационной неустойчивости мог быть запущен во фридмановской Вселенной только при наличии затравочных возмущений плотности, само существование которых никак не связано с темной материей, а обусловлено физикой Большого взрыва. Поэтому встает другой важнейший вопрос о возникновении затравочных возмущений, из которых развилась структура темной материи.

Вопрос о генерации начальных космологических возмущений мы рассмотрим несколько позднее. А сейчас вернемся к темной материи.

В гравитационные ямы концентраций темной материи захватываются барионы. Поэтому, хотя частицы темной материи и не взаимодействуют со светом, свет находится там, где есть темное вещество. Это замечательное свойство гравитационной неустойчивости сделало возможным изучение количества, состояния и распределения темной материи по наблюдательным данным от радиодиапазона до рентгеновского диапазона.

Независимым подтверждением наших выводов о свойствах темной материи и о других параметрах Вселенной служат данные об анизотропии и поляризации реликтового излучения, о распространенности легких элементов во Вселенной, о распределении линий поглощения вещества в спектрах далеких квазаров. Все большую роль играет численное моделирование, заменившее собой эксперимент в космологических исследованиях. Ценнейшая информация о распределении темного вещества содержится в многочисленных наблюдательных данных о гравитационном линзировании далеких источников близлежащими сгустками материи.

Рис. 1. Фотография неба в направлении на скопление галактик 0024 + 1654, полученная на телескопе "Хаббл".

На рисунке 1 показан участок неба в направлении на один из таких сгустков темной массы ($\sim 10^{14}M_{odot}$). Мы видим скопление галактик, захваченных гравитационным полем этого сгустка, горячий рентгеновский газ, покоящийся на дне ямы гравитационного потенциала, и множественное изображение одной из галактик фона, оказавшейся на луче зрения темного гало и искаженной его гравитационным полем.

Таблица 1. Основные космологические параметры

В таблице 1 приведены средние значения космологических параметров, полученные из астрономических наблюдений (точность 10%). Очевидно, суммарная плотность энергии всех видов частиц во Вселенной не превышает 30 % полной критической плотности (вклад нейтрино не более нескольких процентов). Остальные 70% находятся в форме, не принимавшей участия в гравитационном скучивании вещества. Таким свойством обладает лишь космологическая постоянная или ее обобщение - среда с отрицательным давлением ($|\varepsilon + p|\ll\varepsilon $), получившая название "темная энергия". Определение природы последней является дальней перспективой развития физики.

Данный доклад посвящен вопросам физической космологии, решение которых ожидается уже в ближайшие годы. В первую очередь это касается определения начальных условий для образования структур темной материи и поиска самих неизвестных частиц.

2. Ранняя Вселенная и поздняя Вселенная

Наблюдаемая структура Вселенной - результат совместного действия стартовых условий и эволюции поля возмущений плотности. Современные наблюдательные данные позволили определить характеристики поля возмущений плотности в разные эпохи его развития. Тем самым удалось разделить информацию о начальных условиях и об условиях развития, что положило начало независимому исследованию физики ранней и поздней Вселенной.

Под термином "ранняя Вселенная" в современной космологии подразумевают заключительную стадию ускоренного расширения с последующим переходом к горячей фазе эволюции. Нам неизвестны параметры Большого взрыва, имеются только верхние ограничения (см. раздел 3, соотношения (12)). Однако существует хорошо разработанная теория генерации космологических возмущений, в соответствии с которой мы можем рассчитать спектры начальных возмущений плотности вещества и первичных гравитационных волн в зависимости от значений космологических параметров.
Причины отсутствия общепринятой модели ранней Вселенной кроются в устойчивости предсказаний инфляционной парадигмы Большого взрыва - близости генерируемых спектров к плоскому виду, относительной малости амплитуды космологических гравитационных волн, трехмерной евклидовости видимой Вселенной и др., - которые могут быть получены в широком классе параметров моделей. Моментом истины для построения модели ранней Вселенной могло бы стать открытие космологических гравитационных волн, которое представляется возможным в случае успешного проведения международного космического эксперимента "Planck", который должен начаться в 2008 г.

Наши знания о поздней Вселенной диаметрально противоположны. Мы располагаем достаточно точной моделью - знаем состав материи, законы развития структуры, значения космологических параметров (см. табл. 1), но в то же время не имеем общепринятой теории происхождения компонент материи.

Известные нам свойства видимой Вселенной позволяют описать ее геометрию в рамках теории возмущений. Малым параметром ($10^{-5}$) является амплитуда космологических возмущений.

В нулевом порядке Вселенная является фридмановской и описывается единственной функцией времени -масштабным фактором $a(t)$. Первый порядок устроен несколько сложнее. Возмущения метрики являются суммой трех независимых мод - скалярной $S(k)$, векторной $V(k)$ и тензорной $T(k)$, каждая из которых характеризуется своей спектральной функцией волнового числа $k$. Скалярная мода описывает космологические возмущения плотности, векторная мода отвечает за вихревые движения вещества, а тензорная мода - это гравитационные волны. Таким образом, вся геометрия описывается с помощью четырех функций: $a(t),~ S(k),~ V(k)$ и $Т(k)$, из которых сегодня нам известны лишь первые две (в некоторых областях определения).

Большой взрыв представлял собой катастрофический процесс быстрого расширения, сопровождаемый интенсивным быстропеременным гравитационным полем. В ходе космологического расширения возмущения метрики спонтанно рождались параметрическим образом из вакуумных флуктуации, как рождаются любые безмассовые степени свободы под действием внешнего переменного поля. Анализ наблюдательных данных свидетельствует о квантово-гравитационном механизме рождения затравочных возмущений. Тем самым крупномасштабная структура Вселенной является примером решения проблемы измеримости в квантовой теории поля.

Отметим основные свойства рожденных полей возмущений: гауссова статистика (случайные распределения в пространстве), выделенная временная фаза ("растущая" ветвь возмущений), отсутствие выделенного масштаба в широком диапазоне длин волн, ненулевая амплитуда гравитационных волн. Последнее имеет решающее значение для построения модели ранней Вселенной, поскольку, имея простейшую связь с фоновой метрикой, гравитационные волны несут прямую информацию об энергетическом масштабе Большого взрыва.

В результате развития скалярной моды возмущений образовались галактики и другие астрономические объекты. Важным достижением последних лет (эксперимент WMAP (Wilkinson Microwave Anisotropy Probe)) стали серьезные уточнения наших знаний по анизотропии и поляризации реликтового излучения, которые возникли задолго до появления галактик в результате воздействия на распределение фотонов всех трех мод космологических возмущений.

Совместный анализ наблюдательных данных о распределении галактик и анизотропии реликтового излучения позволил разделить стартовые условия и эволюцию. Воспользовавшись условием, что сумма $S+V+T\approx 10^{-10}$ фиксирована величиной анизотропии реликтового излучения, можно получить верхнее ограничение на сумму вихревой и тензорной мод возмущений во Вселенной (их детектирование возможно лишь с увеличением точности наблюдений):
$$\frac{V+T}{S} В случае, если бы неравенство (1) было нарушено, величина возмущений плотности оказалась бы недостаточной для образования наблюдаемой структуры.

3. Вначале был звук...

Эффект квантово-гравитационного рождения безмассовых полей хорошо изучен. Так могут рождаться частицы вещества (см., например, ) (хотя, в частности, реликтовые фотоны возникли вследствие распада протоматерии в ранней Вселенной). Таким же образом происходит генерация гравитационных волн и возмущений плотности , поскольку эти поля тоже относятся к безмассовым и их рождение не запрещено пороговым энергетическим условием. Задача о генерации вихревых возмущений еще ждет своих исследователей.

Теория $S$- и $T$-мод возмущений во фридмановской Вселенной сводится к квантово-механической задаче о независимых осцилляторах $q_k(\eta)$, находящихся во внешнем параметрическом поле ($\alpha(\eta)$) в мире Минковского с временной координатой $\eta=\int dt/a$. Действие и лагранжиан элементарных осцилляторов зависят от их пространственной частоты $k \in (0, \infty)$:
$$S_k = \int L_kd\eta,~\;\;\;L_k=\frac{\alpha^2}{2k^3}(q’^2-\omega^2q^2)~\;\;\;\;\;\;\;\;\; (2)$$
где штрих обозначает производную по времени $\eta$, $\omega=\beta$- частота осциллятора, $\beta$ - скорость распространения возмущений в единицах скорости света в вакууме (здесь и далее $c=\hbar =1$, индекс $k$ у поля $q$ опущен); в случае $T$-моды $q = q_T$ является поперечно-бесследовой компонентой метрического тензора,
$$\alpha^2_T=\frac{a^2}{8\pi G}~\;\;\;\beta=1, ~\;\;\;\;\;\;\;\;\; (3)$$
а в случае $S$-моды $q = q_s$ - линейная суперпозиция продольного гравитационного потенциала (возмущение масштабного фактора) и потенциала 3-скорости среды, умноженного на параметр Хаббла ,
$$\alpha^2_S=\frac{a^2\gamma}{4\pi G\beta^2},\;\;\gamma=\frac{\dot{H}}{H^2},\;\;H=\frac{\dot{a}}{a},~\;\;\;\;\;\;\;\;\; (4)$$
точка означает производную по времени $t$.

Как видно из (3), поле $q_T$ фундаментально, поскольку оно минимальным образом связано с фоновой метрикой и не зависит от свойств материи (в общей теории относительности скорость распространения гравитационных волн равна скорости света). Что касается $q_S$, то его связь с внешнем полем (4) более сложна: она включает в себя как производные от масштабного фактора, так и некоторые характеристики вещества (например, скорость распространения возмущений в среде). Мы ничего не знаем о протоматерии в ранней Вселенной - существуют только общие подходы к этому вопросу.
Обычно рассматривается идеальная среда с тензором энергии-импульса, зависящим от плотности энергии $\epsilon$, давления $p$ и 4-скорости материи $u^\mu$. Для $S$-моды 4-скорость потенциальна и представима в виде градиента 4-скаляра $\phi$:
$$T_{\mu\nu}=(\epsilon + p)u_\mu u_\nu-pg_{\mu\nu},\;\;u_\mu=\frac{\phi_{,\mu}}{w},~\;\;\;\;\;\;\;\;\; (5)$$
где $w^2=\phi_{,\mu}\phi_{,\nu} g^{\mu\nu}$ - нормировочная функция, запятая в нижнем индексе означает производную по координате. Скорость звука задается с помощью "уравнения состояния" как коэффициент пропорциональности между сопутствующими возмущениями давления и плотности энергии материи:
$$\delta p_c=\beta^2\delta\epsilon_c,~\;\;\;\;\;\;\;\;\; (6)$$
где $\delta X_c\equiv\delta X – v\dot{X}$, $v\equiv\delta\phi /w$ - потенциал 3-скорости среды.

В линейном порядке теории возмущений концепция идеальной среды эквивалентна полевой концепции, в соответствии с которой материальному полю $\phi$ приписывается лагранжева плотность, $L=L(w,\phi)$. В полевом подходе скорость распространения возбуждений находится из уравнения
$$\beta^{-2}=\frac{\partial\ln|\partial L/\partial w|}{\partial\ln|w|},~\;\;\;\;\;\;\;\;\; (7)$$
что также соответствует соотношению (6). В большинстве моделей ранней Вселенной предполагается, что $\beta\sim 1$ (в частности на радиационно-доминированной стадии $\beta=1/\sqrt{3}$).

Эволюция элементарных осцилляторов описывается уравнением Клейна-Гордона
$$\bar{q}’’+(\omega^2-U) \bar{q}=0,~\;\;\;\;\;\;\;\;\; (8)$$
где
$$\bar{q}\equiv\alpha q,\;\;U\equiv\frac{\alpha ""}{\alpha},~\;\;\;\;\;\;\;\;\; (9)$$
Решение уравнения (8) имеет две асимптотические ветви поведения: адиабатическую ($\omega^2>U$), когда осциллятор находится в режиме свободных колебаний и его амплитуда возбуждения затухает ($|q|\sim(\alpha\sqrt{\beta})^{-1}$), и параметрическую ($\omega^2

Количественно, спектры рожденных возмущений зависят от начального состояния осцилляторов:
$$T\equiv 2\langle q_T^2\rangle,\;\;\;S\equiv\langle q_S^2\rangle,~\;\;\;\;\;\;\;\;\; (10)$$
коэффициент 2 в выражении для тензорной моды учитывает две поляризации гравитационных волн. Состояние $\langle\rangle$ принято считать основным, т.е. соответствующим минимальному уровню начального возбуждения осцилляторов. В этом состоит главная гипотеза теории Большого взрыва. При наличии адиабатической зоны основное (вакуумное) состояние элементарных осцилляторов является единственным .
Таким образом, предполагая, что функция U возрастает с течением времени и $\beta\sim 1$, получаем универсальный общий результат для спектров $T(k)$ и $S(k)$:
$$T\approx\frac{(1-\gamma/2)H^2}{M_P^2},\;\;\;\frac{T}{S}\approx4\gamma~\;\;\;\;\;\;\;\;\; (11)$$
где $k=\sqrt{U}\approx aH$, а $M_p\equiv G^{-1/2}$ - планковская масса. Как видно из (11), в теории мода $T$ никак не подвергается дискриминации по отношению к моде $S$. Все дело в величине фактора $\gamma$ в эпоху генерации возмущений.
Из наблюдаемого факта малости $T$-моды в нашей Вселенной (см. раздел 2, соотношение (1)), получаем верхнее ограничение на энергетический масштаб Большого взрыва и на параметр $\gamma$ в ранней Вселенной:
$$H Последнее условие означает, что Большой взрыв носил инфляционный характер ($\gamma Мы располагаем важнейшей фазовой информацией: поля рождаются в определенной фазе, параметрически усиливается только растущая ветвь возмущений. Поясним это на примере задачи рассеяния, полагая, что $U = 0$ на начальной (адиабатической) и конечной (радиационно-доминированной, $a\propto n$) стадиях эволюции (см. рис. 2).

Рис. 2. Иллюстрация решения уравнения (8) в постановке задачи рассеяния

Для каждой из вышеупомянутых асимптотик общее решение имеет вид
$$\bar{q}=C_1\sin\omega\eta+C_2\cos\omega\eta,~\;\;\;\;\;\;\;\;\; (13)$$
где операторы $C_{1,2}$ задают амплитуды "растущей" и "падающей" ветвей эволюции. В вакуумном состоянии начальная временная фаза поля произвольна: $\langle|C_1^{(in)}|\rangle=\langle|C_2^{(in)}|\rangle$. Однако в результате решения уравнений эволюции оказывается, что на радиационно-доминированной стадии в выигрыше остается лишь растущая ветвь звуковых возмущений: $\langle|C_1^{(out)}|\rangle\gg\langle|C_2^{(out)}|\rangle$. К моменту отсоединения излучения от вещества в эпоху рекомбинации радиационный спектр промодулирован с фазой $k=n\pi\sqrt{3}/\eta_{rec}$, где $n$ - натуральное число.

Рис. 3. Проявление звуковой модуляции в спектре анизотропии реликтового излучения. (По данным экспериментов WMAP, ACBAR (Arcminute Cosmology Bolometer Array Receiver), BOOMERANG (Ballon Observations Of Millimetric Extragalactic Radiation ANd Geophysics), CBI (Cosmic Background Imager), VSA (Very Small Array).)

Именно эти акустические колебания наблюдаются в спектрах анизотропии реликтового излучения (рис. 3, большой пик соответствует $n = 1$) и возмущений плотности, что подтверждает квантово-гравитационное происхождение $S$-моды. В спектре возмущений плотности звуковая модуляция подавлена фактором малости доли барионов относительно полной плотности вещества, что дает возможность найти эту долю независимо от других космологических тестов. Сам масштаб осцилляции служит примером стандартной линейки, по которой определяют важнейшие параметры Вселенной. В связи с этим следует подчеркнуть, что острота проблемы вырождения космологических параметров в наблюдательных данных, долгие годы препятствовавшая построению реальной модели Вселенной, сегодня снята благодаря обилию независимых и дополняющих друг друга наблюдательных тестов.

Подводя итог, мы можем констатировать, что проблема образования начальных космологических возмущений и крупномасштабной структуры Вселенной сегодня в принципе решена. Окончательное подтверждение теория квантово-гравитационного происхождения возмущений в ранней Вселенной получит после обнаружения $T$-моды, что может случиться уже в ближайшее время. Так, простейшая модель Большого взрыва (степенная инфляция на массивном скалярном поле) предсказывает значение амплитуды $T$-моды всего лишь в 5 раз меньше амплитуды $S$-моды . Современные инструменты и технологии вполне позволяют решить задачу о регистрации столь малых сигналов по данным наблюдений анизотропии и поляризации реликтового излучения.

4. Темная сторона материи

Имеется несколько гипотез о происхождении материи, но ни одна из них пока не подтверждена. Существуют прямые наблюдательные указания, свидетельствующие о том, что загадка темной материи тесно связана с барионной асимметрией Вселенной. Однако общепринятой теории происхождения барионной асимметрии и темной материи сегодня не существует.

Где же находится темная материя?

Мы знаем, что светящаяся компонента вещества наблюдается в виде звезд, собранных в галактики разных масс, и в форме рентгеновского газа скоплений. Однако большая часть обычного вещества (до 90%) находится в виде разреженного межгалактического газа с температурой несколько электронвольт, а также в форме МАСНО (Massive Compact Halo Object) - компактных остатков эволюции звезд и объектов с малой массой. Поскольку эти структуры обычно имеют низкую светимость, за ними закрепилось название "темные барионы".

Рис. 4. Верхнее ограничение на долю массы гало Галактики в МАСНО по данным эксперимента EROS (от франц. - Experience pour la Recherche d"Objets Sombres).

Исследованием количества и распределения компактных темных объектов в гало нашей Галактики по событиям микролинзирования занималось несколько групп (МАСНО, EROS и др.). В результате совместного анализа было получено важное ограничение - не более 20% всей массы гало сосредоточено в МАСНО в диапазоне значений от массы луны до масс звезд (рис. 4). Остальную долю темной материи гало составляют частицы неизвестной природы.

Где еще спрятана небарионная темная материя?

Развитие высоких технологий в наблюдательной астрономии XX века позволило получить ясный ответ на этот вопрос: небарионная темная материя находится в гравитационно-связанных системах (гало). Частицы темной материи являются нерелятивистскими и слабовзаимодействующими - их диссипативные процессы идут не так, как у барионов. Барионы же радиационно остывают, оседают и накапливаются в центрах гало, достигая вращательного равновесия. Темное вещество остается распределенным вокруг видимого вещества галактик с характерным масштабом порядка 200 кпк. Так, в Местной Группе, к которой относятся Туманность Андромеды и Млечный Путь, более половины всей темной материи сосредоточено в этих двух больших галактиках. Частиц, обладающих требуемыми свойствами, в Стандартной модели физики элементарных частиц нет. Важный параметр, который нельзя определить из наблюдений в силу Принципа эквивалентности, - это масса частицы. В рамках возможных расширений Стандартной модели имеется несколько кандидатов в частицы темной материи. Основные из них перечислены в табл. 2 в порядке возрастания их массы покоя.

Таблица 2. Кандидаты в частицы небарионной темной материи

Кандидат

Гравитоны

"Стерильные" нейтрино

Зеркальное вещество

Массивные частицы

Сверхмассивные частицы

$10^{13}$ ГэВ

Монополи и дефекты

$10^{19}$ ГэВ

Первичные черные дыры

$(10^{-16}-10^{-17})M_{\odot}$

Главная на сегодня версия массивных частиц - гипотеза нейтралино - связана с минимальной суперсимметрией. Данная гипотеза может быть проверена на Большом адронном ускорителе в ЦЕРНе, запуск которого намечается в 2008 г. Ожидаемая масса таких частиц $\sim$ 100 ГэВ, а их плотность в нашей Галактике - одна частица в объеме чайного стакана.

Поиск частиц темной материи ведется по всему миру на многих установках. Интересно отметить, что нейтралинная гипотеза допускает независимую проверку как в подземных экспериментах по упругому рассеянию, так и по косвенным данным аннигиляции нейтралино в Галактике. До сих пор получен положительный отклик только в одном из подземных детекторов проекта DAMA (DArk MAtter), где уже на протяжении нескольких лет наблюдается сигнал неизвестного происхождения типа "лето-зима". Однако интервал масс и сечений, связанный с этим экспериментом, пока не подтверждается на других установках, что ставит под сомнение как достоверность, так и значимость результата.

Важным свойством нейтралино является возможность их непрямого наблюдения по аннигиляционному потоку в гамма-области. В процессе иерархического скучивания такие частицы могли образовывать мини-гало с характерным размером порядка размера Солнечной системы и массой порядка массы Земли, остатки которых дожили до наших дней. Сама Земля с большой вероятностью может находиться внутри подобных минигало, где плотность частиц возрастает в несколько десятков раз. Тем самым повышается вероятность как прямого, так и непрямого детектирования темного вещества в нашей Галактике. Существование столь разных методов поиска внушает оптимизм и позволяет надеяться на скорое определение физической природы темной материи.

5. На пороге новой физики

В наше время стало возможным независимое определение свойств ранней Вселенной и поздней Вселенной по наблюдательным астрономическим данным. Мы понимаем, как возникли начальные космологические возмущения плотности, из которых развилась структура Вселенной. Мы знаем значения важнейших космологических параметров, лежащих в основе Стандартной модели Вселенной, не имеющей сегодня серьезных конкурентов. Однако остаются нераскрытыми фундаментальные вопросы происхождения Большого взрыва и основных компонент материи.

Наблюдательное определение тензорной моды космологических возмущений является ключом к построению модели ранней Вселенной. Здесь мы имеем дело с четким предсказанием теории, хорошо проверенной в случае $S$-моды и обладающей возможностью экспериментальной проверки $T$-моды в ближайшие годы.

Теоретическая физика, предоставив обширный перечень возможных направлений и методов поиска частиц темной материи, исчерпала себя. Теперь дело за экспериментом. Сложившаяся на сегодня ситуация напоминает ту, которая предшествовала великим открытиям - обнаружению кварков, W- и Z-бозонов, осцилляции нейтрино, анизотропии и поляризации реликтового излучения.

Возникает один вопрос, который, правда, выходит за рамки данного обзорного доклада: почему Природа столь щедра к нам и позволяет открывать свои секреты?

Список литературы

  1. Гриб А А, Мамаев С Г, Мостепаненко В М Квантовые эффекты в интенсивных внешних полях (М.: Атомиздат, 1980)
  2. Зельдович Я Б, Старобинский А А ЖЭТФ 61 2161 (1971)
  3. ГрищукЛПЖЭГФ67 825(1974)
  4. Лукаш В Н ЖЭТФ 79 1601 (1980)
  5. Lukash V N, astro-ph/9910009
  6. Строков В Н Астрон. журн. 84 483 (2007)
  7. Лукаш В Н УФН176 113 (2006)
  8. Lukash V N, Mikheeva E V Int. J. Mod. Phys. A 15 3783 (2000)

В.Н. Лукаш, Е.В. Михеева

Первым ученым, кто теоретически обосновал и рассчитал возможность существования скрытой неизвестной материи, был швейцарский астроном болгарского происхождения Фриц Цвикки . Используя доплеровские методы, ученый вычислил скорости восьми галактик, расположенных в созвездии Вероники. В научной литературе иногда встречается другое романтичное название – Волосы Вероники .

Тёмная материя и тёмная энергия

История открытия неизвестной массы

Логика расчетов Цвикки заключалась в следующем. Поле тяготения должно удерживать галактики внутри их скопления. Исходя из этого положения, вычисляется необходимая масса. Галактики излучают свет, следовательно, можно рассчитать еще одно значение галактической массы. Эти две величины должны были совпасть, но этого не случилось. Значения очень сильно расходились. Требовалось гораздо большее значение массы для того, чтобы гравитационное поле не давало возможности галактикам разлететься.

Именно этой недостающей ее части Цвикки дал название «темная материя»

Как показали расчеты ученого, обыкновенного вещества в созвездии намного меньше, чем темной материи. Цвикки опубликовал свои результаты в не очень известном журнале Helvetica Phisica Acta .

Однако последующие 40 лет астрофизики старались не замечать такого тревожного и выдающегося результата.

В 1970 году Вера Рубин и У.К.Форд впервые изучают вращательные движения загадочной туманности Андромеды . Немного позже было изучено движение более 60 галактик. Исследования показали, что скорость вращения галактик намного больше той скорости, которую обеспечивает их видимая наблюдаемая масса. Полученный комплекс неоспоримых наблюденных фактов есть доказательство существования скрытой неизвестной материи.

Темная материя. Анатолий Владимирович

Общие представления о неведомых частицах неизвестной материи

В своих исследованиях физики иногда используют труднодоступные для обычных людей методы идентификации непознанных объектов Вселенной. Они оконтуривают неизвестные явления твердо установленными и экспериментально проверенными моделями и начинают потихоньку «прижимать» строптивое явление, терпеливо ожидая от него необходимой информации.

Однако темная материя проявляет истинное гравитационное мужество к научному любопытству физиков.

Скрытая материя скучивается точно так же, как и обыкновенное вещество, образуя галактики и их скопления. В этом, пожалуй, заключается единственное сходство хорошо нам известного видимого вещества и неизвестной массы, доля которой составляет 25% в энергетическом «банке» Вселенной.

Этот неизвестный акционер нашей Вселенной обладает простыми свойствами. Достаточно холодное скрытое вещество охотно взаимодействует с его видимым соседом (в частности, с барионами) исключительно на гравитационном языке. Следует отметить, что космическая плотность барионов в несколько раз меньше плотности скрытой материи. Такое превосходство в плотности позволяет ей фактически «руководить» гравитационным потенциалом Вселенной.

Ученые предполагают, что вещественный состав материи – это новые неизвестные частицы. Но обнаружить их пока не удается. Известно лишь то, что они не распадаются на еще более мелкие элементы Природы. Иначе во временном жизненном интервале Вселенной они бы уже прошли процесс распада. Следовательно, этот факт красноречиво говорит в пользу того, что имеет место быть новый закон сохранения, запрещающий распад частиц. Однако он еще не открыт.

Далее, вещество темной материи «не любит» взаимодействовать с известными частицами. В силу этого обстоятельства состав скрытой массы невозможно определить земными экспериментами. Природа частиц остается неизвестной.

Frequency Keepers - Неоднородная Вселенная

Какие есть пути поиска частиц темного вещества?

Перечислим несколько путей.

  1. Есть предположение , что протоны легче неизвестных частиц на 2-3 порядка. В таком случае они могут рождаться в столкновениях с видимыми частицами, если их разогнать до очень высоких энергий в коллайдере.
  2. Сложилось впечатление , что неведомые частицы находятся где-то там, в далеких галактиках. Нет не только там, но и рядом с нами. Предполагается, что в одном кубическом метре их количество может достигать 1000 штук. Однако они предпочитают избегать столкновений с атомными ядрами известного вещества. Хотя такие случаи бывают, и ученые надеются их зарегистрировать.
  3. Неизвестные частицы скрытой массы аннигилируют между собой. Поскольку обычное вещество для них является абсолютно прозрачным, они могут проваливаться в и . Одним из продуктов процесса аннигиляции является нейтрино, которое обладает способностью беспрепятственно проникать сквозь всю толщу Солнца и Земли. Регистрация таких нейтрино, возможно, даст о неизвестных частицах.

Какова природа скрытой массы?

Ученые наметили три направления в исследовании природы темного вещества.

  1. Барионная темная материя.

При таком предположении все частицы хорошо известны. Но их излучение проявляет себя так, что его невозможно обнаружить.

  • обыкновенное вещество, сильно рассеянное в пространстве между галактиками;
  • массивные астрофизические галообъекты (MACHO).

Данные объекты, окружая галактики, обладают сравнительно маленькими размерами. Имеют очень слабое излучение. Эти свойства не дают возможности их обнаружить.

В состав тел могут входить следующие объекты:

  • коричневые карлики;
  • белые карлики;
  • черные дыры;
  • нейтронные звезды.

Поиск вышеназванных объектов осуществляется с помощью гравитационных линз.

  1. Небарионная темная материя.

Состав вещества неизвестен. Возможны два варианта:

  • холодная масса, которая могла бы включать фотино, аксионы и кварковые комья;
  • горячая масса (нейтрино).
  1. Новый взгляд на тяготение.

Правдивость теории

Не исключено, что межгалактические расстояния заставят посмотреть на выдержанную временем теорию тяготения под новым углом галактического зрения.

Открытия свойств тайной материи еще впереди. Дано ли это знать человеку и что он будет делать с таким богатством – только будущее ответить на эти вопросы.

Все, что мы видим вокруг себя (звезды и галактики) это не более 4-5% от всей массы во Вселенной!

Согласно космологическим теориям современности, наша Вселенная состоит всего из 5% обычной, так называемой барионной материи, которая образует все наблюдаемые объекты; 25% темной материи, регистрируемой благодаря гравитации; и темной энергии, составляющей целых 70% от общего объема.

Термины темная энергия и темная материя не вполне удачны и представляют собой дословный, но не смысловой перевод с английского.

В физическом же смысле данные термины подразумевают, только то, что эти вещества не взаимодействуют с фотонами, и их с таким же успехом можно было бы назвать невидимой или прозрачной материей и энергией.

Многие современные ученные убеждены, что исследования направленные на изучение темной энергии и материи, вероятно, помогут получить ответ на глобальный вопрос: что же ожидает нашу Вселенную в будущем?

Сгустки размером с галактику

Темная материя представляет собой субстанцию, состоящую, скорее всего, из новых, еще неизвестных в земных условиях частиц и обладающую свойствами присущими самому обыкновенному веществу. Например, она способна также как обычные вещества собираться в сгустки и участвовать в гравитационных взаимодействиях. Вот только размеры этих так называемых сгустков могут превышать целую галактику или даже скопление галактик.

Подходы и методы исследования частиц темной материи

На данный момент ученые всего мира всячески пытаются обнаружить или получить искусственно в земных условиях частицы темной материи, посредством специально разработанного сверхтехнологичного оборудования и множества различных научно-исследовательских методов, но пока все труды не увенчиваются успехом.

Один из методов связан с проведением экспериментов на ускорителях высокой энергии, широко известных как коллайдеры. Ученые, считая, что частицы темной материи тяжелее протона в 100-1000 раз, предполагают, что они должны будут зарождаться при столкновении обычных частиц, разогнанных до высоких энергий посредством коллайдера. Суть другого метода заключается в регистрации частиц темной материи, находящихся повсюду вокруг нас. Основная сложность регистрации данных частиц состоит в том, что они проявляют очень слабое взаимодействие с обычными частицами, которые по своей сути для них являются как бы прозрачными. И все же частицы темной материи очень редко, но сталкиваются с ядрами атомов, и имеется определенная надежда рано или поздно все же зарегистрировать данное явление.

Существуют и другие подходы и методы исследования частиц темной материи, а какой из них первым приведет к успеху, покажет лишь время, но в любом случае открытие этих новых частиц станет важнейшим научным достижением.

Субстанция, обладающая антигравитацией

Темная энергия представляет собой еще более необычную субстанцию, чем та же темная материя. Она не обладает способностью собираться в сгустки, в результате чего равномерно распределена абсолютно по всей Вселенной. Но самым необычным ее свойством на данный момент является антигравитация.

Природа темной материи и черных дыр

Благодаря современным астрономическим методам имеется возможность определить темп расширения Вселенной в настоящее время и смоделировать процесс его изменения ранее во времени. В результате этого получена информация о том, что в данный момент, так же как и в недалеком прошлом, наша Вселенная расширяется, при этом темп этого процесса постоянно увеличивается. Именно поэтому и появилась гипотеза об антигравитации темной энергии, так как обычное гравитационное притяжение оказывало бы замедляющее воздействие на процесс «разбегания галактик», сдерживая скорость расширения Вселенной. Данное явление не противоречит общей теории относительности, но при этом темной энергии необходимо обладать отрицательным давлением – свойством, которым не обладает ни одно из известных на данный момент веществ.

Кандидаты на роль «Темной энергии»

Масса галактик в скоплении Абель 2744 составляет менее 5 процентов от всей его массы. Этот газ настолько горячий, что светит только в рентгеновском диапазоне (красный цвет на этом изображении). Распределение невидимой темной материи (составляющей около 75 процентов от массы этого кластера) окрашено в синий цвет.

Одним из предполагаемых кандидатов на роль темной энергии является вакуум, плотность энергии которого остается неизменной в процессе расширения Вселенной и подтверждает тем самым отрицательное давление вакуума. Другим предполагаемым кандидатом является «квинтэссенция» — неизведанное ранее сверхслабое поле, якобы проходящее через всю Вселенную. Также имеются и другие возможные кандидаты, но не один из них на данный момент так и не поспособствовал получению точного ответа на вопрос: что же такое темная энергия? Но уже сейчас понятно, что темная энергия представляет собой что-то совершенно сверхъестественное, оставаясь главной загадкой фундаментальной физики XXI века.

Вопрос происхождения Вселенной, ее прошлого и будущего волновал людей с незапамятных времен. На протяжении многих веков теории возникали и опровергались, предлагая картину мира, опирающуюся на известные данные. Основательным потрясением для научного мира стала теория относительности Эйнштейна. Она же внесла огромный вклад в понимание процессов, формирующих Вселенную. Однако и теория относительности не могла претендовать на звание истины в последней инстанции, не требующей каких бы то ни было дополнений. Совершенствующиеся технологии позволили астрономам сделать немыслимые ранее открытия, которые потребовали новой теоретической базы или значительного расширения уже существующих положений. Одним из таких феноменов стала темная материя. Но обо всем по порядку.

Дела давно минувших дней

Для понимания термина «темная материя» вернемся в начало прошлого века. В то время главенствовало представление о Вселенной как о стационарной структуре. Между тем общая теория относительности (ОТО) предполагала, что рано или поздно приведет к «слипанию» всех объектов космоса в единый клубок, произойдет так называемый гравитационный коллапс. Между космическими объектами не существует сил отталкивания. Взаимное притяжение компенсируется центробежными силами, создающими постоянное движение звезд, планет и прочих тел. Таким образом поддерживается равновесие системы.

Для того чтобы предотвратить теоретический коллапс Вселенной, Эйнштейн ввел - величину, приводящую систему в необходимое стационарное состояние, но при этом фактически выдуманную, не имеющую очевидных оснований.

Расширяющаяся Вселенная

Вычисления и открытия Фридмана и Хаббла показали отсутствие необходимости нарушать стройные уравнения ОТО при помощи новой постоянной. Было доказано, и сегодня этот факт практически ни у кого не вызывает сомнений, что Вселенная расширяется, у нее было когда-то начало, и о стационарности речи идти не может. Дальнейшее развитие космологии привело к появлению теории большого взрыва. Главное подтверждение новых предположений — наблюдаемое увеличение со временем расстояния между галактиками. Именно измерение скорости удаления друг от друга соседних космических систем и привело к формированию гипотезы о том, что существует темная материя и темная энергия.

Данные, не согласующиеся с теорией

Фриц Цвикки в 1931 году, а потом и Ян Оорт в 1932-м и в 1960-х занимались подсчетом массы вещества галактик в удаленном скоплении и соотношения ее со скоростью удаления их друг от друга. Из раза в раз ученые приходили к одним и тем же выводам: такого количества вещества недостаточно, чтобы создаваемая им гравитация могла удержать вместе галактики, двигающиеся со столь большими скоростями. Цвикки и Оорт предположили, что существует скрытая масса, темная материя Вселенной, не позволяющая космическим объектам разлететься в разные стороны.

Однако гипотеза получила признание научного мира только в семидесятых годах, после оглашения результатов работы Веры Рубин.

Она построила кривые вращения, наглядно демонстрирующие зависимость скорости движения вещества галактики от расстояния, которое отделяет его от центра системы. Вопреки теоретическим предположениям оказалось, что скорости звезд по мере удаления от галактического центра не уменьшаются, а возрастают. Объяснить подобное поведение светил можно было только наличием у галактики гало, которое заполняет темная материя. Астрономия, таким образом, столкнулась с совершенно неизученной частью мироздания.

Свойства и состав

Темной этот называют потому, что ее нельзя увидеть никакими существующими способами. Ее присутствие опознается по косвенному признаку: темная материя создает гравитационное поле, при этом не излучая совершенно электромагнитных волн.

Важнейшей задачей, возникшей перед учеными, стало получение ответа на вопрос о том, из чего состоит эта материя. Астрофизики пытались «наполнить» ее привычным барионным веществом (барионная материя состоит из более или менее изученных протонов, нейтронов и электронов). В темное гало галактик включали компактные слабоизлучающие звезды типа и огромные, по массе приближенные к Юпитеру планеты. Однако подобные предположения не выдерживали проверки. Барионная материя, привычная и известная, таким образом, не может играть существенной роли в скрытой массе галактик.

Сегодня поиском неизвестных составляющих занимается физика. Практические изыскания ученых основываются на теории суперсимметрии микромира, согласно которой для каждой известной частицы существует суперсимметричная пара. Вот они-то и составляют темную материю. Однако доказательств существования подобных частиц пока получить не удалось, возможно, это дело ближайшего будущего.

Темная энергия

Открытием нового типа материи не закончились сюрпризы, которые подготовила Вселенная ученым. В 1998 году астрофизикам представился еще один шанс сопоставить данные теорий с фактами. Этот год ознаменовался взрывом в далекой от нас галактике.

Астрономы измерили расстояние до нее и крайне удивились полученным данным: звезда вспыхнула гораздо дальше, чем это должно было быть согласно существующей теории. Оказалось, что со временем увеличивается: сейчас она гораздо выше, чем была 14 миллиардов лет назад, когда предположительно случился большой взрыв.

Как известно, чтобы ускорить движение тела, ему нужно передать энергию. Силу, которая вынуждает Вселенную расширяться быстрее, стали называть темной энергией. Это не менее загадочная часть космоса, чем темная материя. Известно лишь, что для нее характерно равномерное распределение по всей Вселенной, а зарегистрировать ее воздействие можно лишь на огромных космических расстояниях.

И снова космологическая постоянная

Темная энергия пошатнула теорию большого взрыва. Часть научного мира скептически относится к возможности подобной субстанции и вызванного ей ускорения расширения. Некоторые астрофизики пытаются возродить забытую космологическую постоянную Эйнштейна, которая вновь из разряда большой научной ошибки может перейти в число рабочих гипотез. Ее присутствие в уравнениях создает антигравитацию, приводящую к ускорению расширения. Однако некоторые следствия наличия космологической постоянной не согласуются с данными наблюдений.

Сегодня темная материя и темная энергия, составляющие большую часть вещества во Вселенной, — загадки для ученых. Однозначного ответа на вопрос об их природе нет. Более того, возможно, это не последняя тайна, что хранит от нас космос. Темная материя и энергия могут стать преддверием новых открытий, способных перевернуть наше представление об устройстве Вселенной.