Стандартная модель элементарных частиц для начинающих. Стандартная модель

«Мы задаёмся вопросом, почему группа талантливых и преданных своему делу людей готова посвятит жизнь погоне за такими малюсенькими объектами, которые даже невозможно увидеть? На самом деле, в занятиях физиков элементарных частиц проявляется человеческое любопытство и желание узнать, как устроен мир, в котором мы живём» Шон Кэрролл

Если вы всё ещё боитесь фразы квантовая механика и до сих пор не знаете, что такое стандартная модель - добро пожаловать под кат. В своей публикации я попытаюсь максимально просто и наглядно объяснить азы квантового мира, а так же физики элементарных частиц. Мы попробуем разобраться, в чём основные отличия фермионов и бозонов, почему кварки имеют такие странные названия, и наконец, почему все так хотели найти Бозон Хиггса.

Из чего мы состоим?

Ну что же, наше путешествие в микромир мы начнём с незатейливого вопроса: из чего состоят окружающие нас предметы? Наш мир, как дом, состоит из множества небольших кирпичиков, которые особым образом соединяясь, создают что-то новое, не только по внешнему виду, но ещё и по своим свойствам. На деле, если сильно к ним приглядеться, то можно обнаружить, что различных видов блоков не так уж и много, просто каждый раз они соединяются друг с другом по-разному, образуя новые формы и явления. Каждый блок - это неделимая элементарная частица, о которой и пойдёт речь в моём рассказе.

Для примера, возьмём какое-нибудь вещество, пусть у нас это будет второй элемент периодической системы Менделеева, инертный газ, гелий . Как и остальные вещества во Вселенной, гелий состоит из молекул, которые в свою очередь образованы связями между атомами. Но в данном случае, для нас, гелий немного особенный, потому что он состоит всего из одного атома.

Из чего состоит атом?

Атом гелия, в свою очередь, состоит из двух нейтронов и двух протонов, составляющих атомное ядро, вокруг которого вращаются два электрона. Самое интересное, что абсолютно неделимым здесь является лишь электрон .

Интересный момент квантового мира

Чем меньше масса элементарной частицы, тем больше места она занимает. Именно по этой причине электроны, которые в 2000 раз легче протона, занимают гораздо больше места по сравнению с ядром атома.

Нейтроны и протоны относятся к группе так называемых адронов (частиц, подверженных сильному взаимодействию), а если быть ещё точнее, барионов .

Адроны можно разделить на группы
  • Барионов, которые состоят из трёх кварков
  • Мезонов, которые состоят из пары: частица-античастица

Нейтрон, как ясно из его названия, является нейтрально заряженным, и может быть поделён на два нижних кварка и один верхний кварк. Протон, положительно заряженная частица, делится на один нижний кварк и два верхних кварка.

Да, да, я не шучу, они действительно называются верхний и нижний. Казалось бы, если мы открыли верхний и нижний кварк, да ещё электрон, то сможем с их помощью описать всю Вселенную. Но это утверждение было бы очень далеко от истины.

Главная проблема - частицы должны как-то между собой взаимодействовать. Если бы мир состоял лишь из этой троицы (нейтрон, протон и электрон), то частицы бы просто летали по бескрайним просторам космоса и никогда бы не собирались в более крупные образования, вроде адронов.

Фермионы и Бозоны

Достаточно давно учёными была придумана удобная и лаконичная форма представления элементарных частиц, названная стандартной моделью. Оказывается, все элементарные частицы делятся на фермионы , из которых и состоит вся материя, и бозоны , которые переносят различные виды взаимодействий между фермионами.

Разница между этими группами очень наглядна. Дело в том, что фермионам для выживания по законам квантового мира необходимо некоторое пространство, а для бозонов почти не важно наличие свободного места.

Фермионы

Группа фермионов, как было уже сказано, создаёт видимую материю вокруг нас. Что бы мы и где ни увидели, создано фермионами. Фермионы делятся на кварки , сильно взаимодействующие между собой и запертые внутри более сложных частиц вроде адронов, и лептоны , которые свободно существуют в пространстве независимо от своих собратьев.

Кварки делятся на две группы.

  • Верхнего типа. К кваркам верхнего типа, с зарядом +2\3, относят: верхний, очарованный и истинный кварки
  • Нижнего типа. К кваркам нижнего типа, с зарядом -1\3, относят: нижний, странный и прелестный кварки
Истинный и прелестный являются самыми большими кварками, а верхний и нижний - самыми маленькими. Почему кваркам дали такие необычные названия, а говоря более правильно, «ароматы», до сих пор для учёных предмет споров.

Лептоны также делятся на две группы.

  • Первая группа, с зарядом «-1», к ней относят: электрон, мюон (более тяжёлую частицу) и тау-частицу (самую массивную)
  • Вторая группа, с нейтральным зарядом, содержит: электронное нейтрино, мюонное нейтрино и тау-нейтрино
Нейтрино - есть малая частица вещества, засечь которую практически невозможно. Её заряд всегда равен 0.

Возникает вопрос, не найдут ли физики ещё несколько поколений частиц, которые будут еще более массивными, по сравнению с предыдущими. На него ответить трудно, однако теоретики считают, что поколения лептонов и кварков исчерпываются тремя.

Не находите никакого сходства? И кварки, и лептоны делятся на две группы, которые отличаются друг от друга зарядом на единицу? Но об этом позже...

Бозоны

Без них бы фермионы сплошным потоком летали по вселенной. Но обмениваясь бозонами, фермионы сообщают друг другу какой-либо вид взаимодействия. Сами бозоны же с друг другом практически не взаимодействуют.
На самом деле, некоторые бозоны всё же взаимодействуют друг с другом, но об этом будет рассказано более подробно в следующих статьях о проблемах микромира

Взаимодействие, передаваемое бозонами, бывает:

  • Электромагнитным , частицы - фотоны. С помощью этих безмассовых частиц передаётся свет.
  • Сильным ядерным , частицы - глюоны. С их помощью кварки из ядра атома не распадаются на отдельные частицы.
  • Слабым ядерным , частицы - ±W и Z бозоны. С их помощью фермионы перекидываются массой, энергией, и могут превращаться друг в друга.
  • Гравитационным , частицы - гравитоны . Чрезвычайно слабая в масштабах микромира сила. Становится видимой только на сверхмассивных телах.
Оговорка о гравитационном взаимодействии.
Существование гравитонов экспериментально ещё не подтверждено. Они существуют лишь в виде теоретической версии. В стандартной модели в большинстве случаев их не рассматривают.

Вот и всё, стандартная модель собрана.

Проблемы только начались

Несмотря на очень красивое представление частиц на схеме, осталось два вопроса. Откуда частицы берут свою массу и что такое Бозон Хиггса , который выделяется из остальных бозонов.

Для того, что бы понимать идею применения бозона Хиггса, нам необходимо обратиться к квантовой теории поля. Говоря простым языком, можно утверждать, что весь мир, вся Вселенная, состоит не из мельчайших частиц, а из множества различных полей: глюонного, кваркового, электронного, электромагнитного и.т.д. Во всех этих полях постоянно возникают незначительные колебания. Но наиболее сильные из них мы воспринимаем как элементарные частицы. Да и этот тезис весьма спорный. С точки зрения корпускулярно-волнового дуализма, один и тот же объект микромира в различных ситуациях ведёт себя то как волна, то как элементарная частица, это зависит лишь от того, как физику, наблюдающему за процессом, удобнее смоделировать ситуацию.

Поле Хиггса
Оказывается, существует так называемое поле Хиггса, среднее значение которого не хочет стремиться к нулю. В результате чего, это поле старается принять некоторое постоянное ненулевое значение во всей Вселенной. Поле составляет вездесущий и постоянный фон, в результате сильных колебаний которого и появляется Бозон Хиггса.
И именно благодаря полю Хиггса, частицы наделяются массой.
Масса элементарной частицы, зависит от того, насколько сильно она взаимодействует с полем Хиггса , постоянно пролетая внутри него.
И именно из-за Бозона Хиггса, а точнее из-за его поля, стандартная модель имеет так много похожих групп частиц. Поле Хиггса вынудило сделать множество добавочных частиц, таких, например, как нейтрино.

Итоги

То, что было рассказано мною, это самые поверхностные понятия о природе стандартной модели и о том, зачем нам нужен Бозон Хиггса. Некоторые учёные до сих пор в глубине души надеются, что частица, найденная в 2012 году и похожая на Бозон Хиггса в БАКе, была просто статистической погрешностью. Ведь поле Хиггса нарушает многие красивые симметрии природы, делая расчёты физиков более запутанными.
Некоторые даже считают, что стандартная модель доживает свои последние годы из-за своего несовершенства. Но экспериментально это не доказано, и стандартная модель элементарных частиц остаётся действующим образцом гения человеческой мысли.

В масштабах микромира фактически теряется разница между частицами вещества и частицами (квантами) поля, поэтому в соответствии с общепринятой в настоящее время стандартной моделью все известные на сегодняшний день элементарные частицы делятся на два больших класса: частицы - источники взаимодействий и частицы - переносчики взаимодействий (рис.8.1). Частицы первого класса, в свою очередь, подразделяются на две группы, отличающиеся тем, что частицы первой группы - адроны 1 - участвуют во всех четырех фундаментальных взаимодействиях, включая сильные, а частицы второй группы - лептоны - не участвуют в сильных взаимодействиях. К адронам относится очень много различных элементарных частиц, большинство из которых имеет своего «двойника» - античастицу . Как правило, это довольно массивные частицы, с малым временем жизни. Исключение составляют нуклоны, причем считается, что время жизни протона превышает возраст Вселенной. Лептонами являются шесть элементарных частиц: электрон е, мюон  и таон , а также связанные с ними три нейтрино  е,   и   . Кроме того, каждая из этих частиц также имеет своего «двойника» - соответствующую античастицу. Все лептоны настолько похожи друг на друга по некоторым, специфическим в масштабах микромира свойствам, что мюон и таон можно было бы назвать тяжелыми электронами, а нейтрино - электронами, «потерявшими» заряд и массу. В то же время, в отличие от электронов, мюоны и таоны являются радиоактивными, а все нейтрино чрезвычайно слабо взаимодействуют с веществом и поэтому настолько неуловимы, что, например, их поток проходит через Солнце, практически не ослабляясь. Отметим, что нейтрино в последнее время привлекают к себе огромный интерес, особенно в связи с проблемами космологии, так как считается, что в потоках нейтрино сосредоточена значительная часть массы Вселенной.

Что касается адронов, то сравнительно недавно, около 30 лет назад, физики нащупали еще один «этаж» в их строении. Рассматриваемая стандартная модель предполагает, что все адроны являются суперпозицией нескольких кварков и антикварков . Кварки различаются по свойствам, многие из которых не имеют аналогов в макромире. Различные кварки обозначаются буквами латинского алфавита: u («up»), d («down»), c («charm»), b («beauty»), s («strange»), t («truth»). Кроме того,

Рис.8.1. Стандартная модель элементарных частиц

каждый из перечисленных кварков может существовать в трех состояниях, которые называются «цветом» : «синем», «зеленом» и «красном». В последнее время стало общепринятым говорить еще и об «аромате» кварка - так называют все его параметры, не зависящие от «цвета». Конечно, все эти термины не имеют ничего общего с обычными значениями соответствующих слов. Этими вполне научными терминами обозначаются физические характеристики, которым как правило невозможно дать макроскопическую интерпретацию. Предполагается, что кварки имеют дробный электрический заряд (-е/3 и +2е/3, где е = 1,6  10 -19 Кл - заряд электрона) и взаимодействуют друг с другом с «силой», увеличивающейся с расстоянием. Поэтому кварки нельзя «разорвать», они не могут существовать отдельно друг от друга 1 . В определенном смысле кварки являются «настоящими», «истинными» элементарными частицами для адронной формы материи. Теория, описывающая поведение и свойства кварков, называется квантовой хромодинамикой .

Частицы - переносчики взаимодействий включают в себя восемь глюонов (от английского слова glue - клей), ответственных за сильные взаимодействия кварков и антикварков, фотон , осуществляющий электромагнитное взаимодействие, промежуточные бозоны , которыми обмениваются слабо-взаимодействующие частицы, и гравитон , принимающий участие в универсальном гравитационном взаимодействии между всеми частицами.

Мир элементарных частиц подчиняется квантовым законам и всё ещё не до конца познан. Определяющим понятием при построении различных моделей взаимодействия элементарных частиц является понятие симметрии, понимаемое как математическое свойство неизменности процессов взаимодействия при различных преобразованиях координат или внутренних параметров модели. Такие преобразования образуют группы называемые группами симметрии.

Именно на основе понятия симметрии строится и Стандартная модель. Прежде всего, она обладает пространственно-временной симметрией относительно вращений и сдвигов в пространстве-времени. Соответствующая группа симметрии носит название группы Лоренца (или Пуанкаре). Этой симметрии соответствует независимость предсказаний от выбора системы отсчёта. Кроме того, имеются группы внутренней симметрии – симметрии относительно вращений в пространстве «изоспина» и «цвета» (в случае слабых и сильных взаимодействий соответственно). Также ещё имеется группа фазовых вращений, связанная с электромагнитными взаимодействиями. Этим симметриям соответствуют законы сохранения электрического заряда, «цветного» заряда и т.д. Полная группа внутренней симметрии Стандартной модели, полученная на основе анализа многочисленных экспериментальных данных, есть произведение унитарных групп SU(3) x SU(2) x U(1). Все частицы Стандартной модели принадлежат различным представлениям групп симметрии, причём частицы разного спина никогда не перемешиваются.

Стандартная модель современная теория строения и взаимодействий элементарных частиц, теория базируется на очень небольшом количестве постулатов и позволяет теоретически предсказывать свойства различных процессов в мире элементарных частиц. Для описания свойств и взаимодействий элементарных частиц используется понятие физического поля, которое ставится в соответствие каждой частице: электронное, мюонное, кварковое и т.д. Поле есть специфическая форма распределения материи в пространстве. Поля, сопоставляемые элементарным частицам, имеют квантовую природу. Элементарные частицы являются квантами соответствующих полей. Рабочим инструментом Стандартной модели является квантовая теория поля. Квантовая теория поля (КТП) является теоретической основой описания микрочастиц, их взаимодействий и взаимопревращений. Maтематический аппарат квантовой теории поля (КТП) позволяет описать рождение и уничтожение частицы в каждой пространственно-временной точке.

Стандартная модель описывает три типа взаимодействия: электромагнитное, слабое и сильное. Гравитационное взаимодействие не входи в Стандартную модель.

Основным вопросом для описания динамики элементарных частиц является вопрос о выборе системы первичных полей, т.е. о выборе частиц (и соответственно полей), которые следует считать наиболее фундаментальными (элементарными) при описании наблюдаемых частиц материи. Стандартная модель отбирает в качестве фундаментальных частиц бесструктурные частицы со спином ½: три пары лептонов ( , ( и три пары кварков обычно группируемые в три поколения.

Стандартная модель фундаментальных взаимодействий

в физике элементарных частиц.

Фундаментальные взаимодействия.

По современным представлениям, все известные в настоящее время процессы сво­дят­ся к 4 типам взаимодействий, которые называются фундаментальными (таблица 1).

Таблица 1. Фундаментальные взаимодействия.

взаимодейст­вия (поле)

Константа

взаимодей­ст­вия

взаимодей­ст­вия

Характер­ные

Частицы - переносчики

(кванты полей)

Название

Гравитацион­ное

Гравитон (?)

10 -17 ... 10 -18 м

W + , W - - бозоны

Z 0 - бозон

Электромаг­нит­ное

10 -14 ... 10 -15 м

В квантовой физике каждая элементарная частица является квантом некоторого поля, и наоборот, каждому полю соответствует своя частица-квант. Энергия и импульс каждого поля слагаются из множества отдельных порций - квантов. Самый простой и лучше всего изученный пример: электромагнитное поле и его квант - фотон. Квантами поля сильных взаимодействий являются глюоны. Кванты поля слабых взаимодействий - ка­ли­б­ро­­во­ч­ны­е бозоны W ± иZ 0 . Все эти частицы обнаружены экспериментально, и их свой­ства хорошо изучены. Переносчиком гравитационного взаимодействия является грави­тон: гипо­те­тическая частица, которая экспериментально пока не обнаружена. Кванты-переносчики полей имеют целый спин, т.е. являются бозе-частицами (бозонами), что и отражено в названии некоторых из них.

Современные ускорители. Все современные ускорители - коллайдеры (т.е. исполь­зу­ют встречные пучки) .

Таблица 2. Крупнейшие ускорители.

Название ускорителя

Ускоряемые частицы

Максимальные энергии

Год начала работы

Длина ускорительной камеры

протон-антипротон

(линейный)

электрон-позитрон

электрон-позитрон

100 + 100 Гэв

Швейцария

электрон-протон

30 Гэв + 920 Гэв

Германия

электрон-позитрон

протон - протон

Швейцария

(линейный)

электрон-позитрон

500 + 500 Гэв

строится

Германия

протон - протон

строится

Из-за того, что кварки и глюоны взаимодействуют между собой сильнее, чем электроны и позитроны, а также из-за того, что энергии протон-протонных ускорителей больше, в столкновениях протонов с протонами происходит гораздо больше событий, чем в столкновениях электронов. В этом есть и плюсы, и минусы; минусы в том, что труднее выделить нужные реакции. Поэтому протон-протонные коллайдеры называют машинами открытий, а электрон-позитронные - машинами точных измерений .

Стандартная модель.

К настоящему времени раз­работано квантовое описание трех из четырех фун­да­мен­таль­ных вза­и­мо­дей­ст­вий: сильного, электромагнитного и слабого, а также пока­за­но, что сла­бое и электромаг­нит­ное взаимодействия фактически имеют общее происхождение (электро­сла­бое взаимодей­ст­вие). Совпадение с экспериментом наблюдается до расстояний 10 -18 м, что является преде­лом для современной экспериментальной техники. Поэтому теория трех не­гравитационных вза­имодействий, включающая 12 фундаментальных частиц, которые в них участвуют (таблица 2), называетсястан­дарт­ной моделью физики элементарных час­тиц.

Таблица 3. Фундаментальные частицы.

Масса, Мэв

Масса, Мэв

Масса, Мэв

Электрон

Электронное нейтрино

Мюонное нейтрино

Таонное нейтрино

Симметрия и инвариантность.

В том случае, когда состояние системы в результате какого-либо преобразования не ме­няется, говорят, что система обладает симметрией относительно данного преобразования. По­нятие симметрии является очень важным в физике элементарных частиц, т.к. каждому ви­ду симметрии соответствует свой закон сохранения и наоборот: каждому закону сохранения какой-либо физической величины соответствует своя симметрия . Общеизвестной яв­ля­ется связь симметрии времени и пространства относительно сдвигов (однородность) и по­во­ротов (изотропность) с законами сохранения энергии, импульса и момента импульса. Эти законы являются универсальными, т.е. выполняются во всех видах взаимодействий .

Кроме этих общеизвестных видов симметрии существуют так называемые "внут­рен­ние симметрии", которые в физике элементарных частиц называются "калибровочными сим­мет­риями (или инвариантностями)" . В квантовой физике существует калибровочная ин­вариантность к изменению фазы волновой функции, т.к. не существует способа оп­ре­де­лить абсолютную величину фазы этой функции. Другими словами, квантовая механика ин­ва­ри­антна относительно произвольного изменения фазы волновой функции на постоянную ве­ли­чину, т.е. замены ψ наψ· exp (i ) при условии = const . Это так называемая "глобальная ка­либ­ровочная сим­мет­рия" относительно изменения фазы волновой функции на одну и ту же ве­ли­чи­ну сразу во всем пространстве и во все моменты времени . Эта инвариант­ность оче­вид­на, т.к. множитель exp (i ) при подстановке измененной волновой функции в урав­не­ние Шре­дин­ге­ра

можно сократить.

Если фаза не равна константе, а является произвольной функцией ко­ор­динат и вре­мени, то такое преобразование называется локальным. При заменеψ наψ· exp (i (r , t )) урав­не­ние Шредингера, конечно, изменится, од­на­ко его можно сохранить неизменным, если ввести в него компенсиру­ю­щее поле: четырехмерный вектор (φ (r , t ), A (r , t )), который является со­во­куп­нос­тью скалярного и векторного потенциалов электромагнитного поля, квантами которо­го являются фотоны. В этом и заключается основная идея квантового описания электро­маг­нит­ного взаимодействия (КЭД).

Бозон Хиггса.

Подобная идея используется для построения теории всех взаимодействий, а соответ­ст­вую­щий вид симметрии называется "локальной калибровочной ин­ва­ри­антностью". Однако при этом возникает проблема. Обязательным требованием к уравнениям для любого фи­зи­чес­кого поля является инвариантность по отношению к преобразованиям Ло­рен­ца. А это вы­пол­няется только в том случае, если масса кванта поля рав­на нулю. Из таб­лицы 1 видно, что кван­ты электромагнитного, сильного и грави­та­ци­он­ного полей яв­ля­ют­ся безмассовыми (т.е. име­ют нулевую массу покоя), но кванты-перенос­чи­ки слабых вза­и­мо­дей­ствий имеют до­воль­но большие массы. Такая же проблема возникает и при объяснении значений масс у дру­гих элементарных частиц. Можно сказать, что внутренние сим­метрии запрещают эле­мен­тар­ным частицам иметь ненулевые массы покоя, что, конечно, про­тиворечит экс­пе­ри­мен­таль­ным данным. Этот вопрос - об объяснении различных зна­че­ний масс у элементарных частиц - оставался до последнего времени нерешенным в стан­дарт­ной модели.

Для объяснения этого противоречия в 1964 году Ф.Энглер (F.Englert) и Р.Браут (R.Bro­ut) и независимо от них П.Хиггс (P.Higgs) почти одновременно предположили, что су­щест­вует еще одно поле, взаимодействие с которым придает частицам массу. П.Хиггс, кроме это­го, предсказал существование у этого поля кванта - бозона со спином, равным нулю, поэ­то­му гипотетический квант этого поля получил название "бозон Хиггса". Масса этой час­ти­цы, согласно сделанным тогда оценкам, должна находиться в диапазоне от 60 до 1000 Гэв. Ус­корителей, на которых можно было бы обнаружить частицу с такой массой, до последнего вре­мени не существовало, поэтому бозон Хиггса оставался единственной еще не обнару­жен­ной экспериментально части­цей стандартной модели .

На семинаре в ЦЕРНЕ 4 июля 2012 года было объявлено об открытии новой частицы, свойства которой, как осторожно заявляют авторы открытия, соответствуют ожидаемым свойствам теоретически предсказанного бозона Хиггса - элементарного бозона Стандартной модели физики элементарных частиц. Эта новая частица (для нее принято обозначение H) не имеет электрического заряда. Масса бозона по данным одной группы экспериментов равна (125.3 ± 0.9) Гэв, по данным другой группы (126.0 ± 0.8) Гэв. БозонHнестабилен, его время жизни примерно 10 -24 с, и он может распадаться по-разному. НаLHCнаблюдались распады на два фотона, и на две пары: электрон-позитрон и (или) мюон-антимюон:

H →γ+γ,

H e - + e + + e - + e + ,

H e - + e + + μ - + μ + ,

H μ - + μ + + μ - + μ + .

Последние три распада коротко можно записать так

H → 4l ,

где l - один из лептонов (электрон, позитрон, мюон). Все эти распады соответствуют пред­сказанным свойствам бозона Хиггса.

Все это позволяет с большой вероятностью утверждать, что бозон Хиггса открыт, и Стандартная модель получила принципиально важное экспериментальное подтверждение.

Литература.

    Физическая энциклопедия, т.5 /Гл. ред. А.М.Прохоров. - М.: Большая Российская энциклопедия, 1998. - с. 596-608.

    Капитонов И.М. Введение в физику ядра и частиц. - М.: УРСС, 2002.

    Рубаков В.А. К открытию на Большом адронном коллайдере новой частицы со свойствами бозона Хиггса. - УФН, 2012, т.182, №10. - с.1017-1025.

    Рубаков В.А. Долгожданное открытие бозона Хиггса. - Наука и жизнь, 2012, №10. - с.2-17.

    Физическая энциклопедия, т.4 /Гл. ред. А.М.Прохоров. - М.: Большая Российская энциклопедия, 1994. - с. 505-520.

    Физика микромира: Маленькая энциклопедия /Гл. ред. Д.В.Ширков. - М.: "Советская энциклопедия", 1980.

    Грин Б. Элегантная Вселенная. /Пер. с англ. под ред. В.О.Малышенко. - Изд. 2-е. - М.: Едиториал УРСС, 2005. - 288 с.

    Аринштейн Э.А. Элементы теоретической физики: Учебное пособие. - Тюмень, Изд-во Тюменского госуниверситета, 2011. - с.103-105.