Понижение степени гиперболического синуса. Справочные данные по гиперболическим функциям – свойства, графики, формулы. Основные функции комплексной переменной

Его можно записать в параметрическом виде, используя гиперболические функции (этим и объясняется их название).

Обозначим y= b·sht , тогда х2 / а2=1+sh2t =ch2t . Откуда x=± a·cht .

Таким образом мы приходим к следующим параметрическим уравнениям гиперболы:

У= в ·sht , – < t < . (6)

Рис. 1.

Знак ""+"" в верхней формуле (6) соответствует правой ветви гиперболы, а знак ""– "" - левой (см. рис. 1). Вершинам гиперболы А(– а; 0) и В(а; 0) соответствует значение параметра t=0.

Для сравнения можно привести параметрические уравнения эллипса, использующие тригонометрические функции:

X=а·cost ,

Y=в·sint , 0 t 2p . (7)

3. Очевидно, что функция y=chx является четной и принимает только положительные значения. Функция y=shx – нечетная, т.к. :

Функции y=thx и y=cthx являются нечетными как частные четной и нечетной функции. Отметим, что в отличие от тригонометрических, гиперболические функции не являются периодическими.

4. Исследуем поведение функции y= cthx в окрестности точки разрыва х=0:

Таким образом ось Оу является вертикальной асимптотой графика функции y=cthx . Определим наклонные (горизонтальные) асимптоты:

Следовательно, прямая у=1 является правой горизонтальной асимптотой графика функции y=cthx . В силу нечетности данной функции ее левой горизонтальной асимптотой является прямая у= –1. Нетрудно показать, что эти прямые одновременно являются асимптотами и для функции y=thx. Функции shx и chx асимптот не имеют.

2) (chx)"=shx (показывается аналогично).

4)

Здесь так же прослеживается определенная аналогия с тригонометрическими функциями. Полная таблица производных всех гиперболических функций приведена в разделе IV.

, страница 6

11 Основные функции комплексной переменной

Напомним определение комплексной экспоненты – . Тогда

Разложение в ряд Маклорена. Радиус сходимости этого ряда равен +∞, значит комплексная экспонента аналитична на всей комплексной плоскости и

(exp z)"=exp z; exp 0=1. (2)

Первое равенство здесь следует, например, из теоремы о почленном дифференцировании степенного ряда.

11.1 Тригонометрические и гиперболические функции

Синусом комплексного переменного называется функция

Косинус комплексного переменного есть функция

Гиперболический синус комплексного переменного определяется так:

Гиперболический косинус комплексного переменного -- это функция

Отметим некоторые свойства вновь введеных функций.

A. Если x∈ ℝ , то cos x, sin x, ch x, sh x∈ ℝ .

Б. Имеет место следующая связь тригонометрических и гиперболических функций:

cos iz=ch z; sin iz=ish z, ch iz=cos z; sh iz=isin z.

В. Основные тригонометрическое и гиперболическое тождества :

cos 2 z+sin 2 z=1; ch 2 z-sh 2 z=1.

Доказательство основного гиперболического тождества.

Основное тригонометрическое тождество следует из оновного гиперболического тождества при учете связи тригонометрических и гиперболических функций (см. свойство Б)

Г Формулы сложения :

В частности,

Д. Для вычисления производных тригонометрических и гиперболических функций следует применить теорему о почленном дифференцировании степенного ряда. Получим:

(cos z)"=-sin z; (sin z)"=cos z; (ch z)"=sh z; (sh z)"=ch z.

Е. Функции cos z, ch z четны, а функции sin z, sh z нечетны.

Ж. (Периодичность) Функция e z периодична с периодом 2π i. Функции cos z, sin z периодичны с периодом 2π , а функции ch z, sh z периодичны с периодом 2πi. Более того,

Применяя формулы суммы, получаем

З . Разложения на действительную и мнимую части :

Если однозначная аналитическая функция f(z) отображает биективно область D на область G, то D называется областью однолистности.

И. Область D k ={ x+iy | 2π k≤ y<2π (k+1)} для любого целого k является областью однолистности функции e z , которая отображает ее на область ℂ* .

Доказательство. Из соотношения (5) следует инъективность отображения exp:D k → ℂ . Пусть w -- любое ненулевое комплексное число. Тогда, решая уравнения e x =|w| и e iy =w/|w| с действительными переменными x и y (y выбираем из полуинтеравала ); иногда вводятся в рассмотрение… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

Функции, обратные по отношению к гиперболическим функциям (См. Гиперболические функции) sh х, ch х, th х; они выражаются формулами (читается: ареа синус гиперболический, ареа косинус гиперболический, ареа тангенс… … Большая советская энциклопедия

Функции, обратные к гиперболич. функциям; выражаются формулами … Естествознание. Энциклопедический словарь

Обратные гиперболические функции определяются как обратные функции к гиперболическим функциям. Эти функции определяют площадь сектора единичной гиперболы x2 − y2 = 1 аналогично тому, как обратные тригонометрические функции определяют длину… … Википедия

Книги

  • Гиперболические функции , Янпольский А.Р.. В книге излагаются свойства гиперболических и обратных гиперболических функций и даются соотношения между ними и другими элементарными функциями. Показаны применения гиперболических функций к…