Кто первый детально исследовал законы фотоэффекта. Практическая физика: внешний фотоэффект

Как бы ни был среднестатистический человек далёк в своей повседневной жизни от пройденной некогда школьной программы, она нет-нет да и заставит о себе вспомнить. Именно так происходит, когда речь заходит о явлении внешнего фотоэффекта.

Определение

Фотоэффектом в физике принято считать процесс выравнивания электронов в атомах, молекулах вещества, который возникает и происходит под воздействием света. А внешний фотоэффект - процесс, при котором электроны выбиваются светом с такой силой, что вылетают за внешние пределы своего вещества.

Немного истории и практики

Впервые на этот удивительный факт обратил внимание учёный-физик из Германии в далёком 1887-м году. Изучение открытия было продолжено коллегой Герца, русским физиком Столетовым. А гениальный Эйнштейн разработал теорию фотоэффекта на основе идей С тех пор внешний фотоэффект изучен достаточно глубоко и разносторонне, а полученные знания применяются в полном объёме при разработке и производстве приборов на основе фотоэлементов. Если брать самый элементарный пример, то это автоматические работающие на фотоэлементах.

Механизмы такого типа работают на Однако фотоэлементы, которые используют только внешний фотоэффект, трансформируют энергию, получаемую при излучении, в электрическую не полностью. Поэтому применять их в качестве источников электроэнергии особого смысла нет, чего не скажешь об автоматике. Именно при помощи световых пучков происходит управление электроцепями в автоматических механизмах.

Без преувеличения можно утверждать, что открытие фотоэффекта стало поистине революционным событием в физике. Вот самые значимые его последствия:

  • перед учёными приоткрылась тайна природы света, светового луча;
  • кино из немого стало «говорящим», были придуманы способы озвучки, да и сам факт передачи движущегося изображения тоже стал возможен благодаря фотоэффекту;
  • создание на основе фотоэлектронных приборов таких станков и «умных машин», которые по заданным параметрам без участия человека изготавливают различные детали;
  • множество различных механизмов, основанных на работе фотоэлектронной автоматики.

Таким образом, сам фотоэффект и его применение стали своего рода прорывом в современной технике.

Классификация фотоэлементов

Фотоэффекты делятся на несколько видов в зависимости от своих свойств и выполняемых функций.

  1. Внешний фотоэффект (по-другому - фотоэлектронная эмиссия). Электроны, которые вылетают за пределы вещества при его возникновении, получили название фотоэлектронов. А который они образуют, когда упорядоченно движутся по внешнему электрическому полю, стал называться фототоком.
  2. Внутренний фотоэффект, влияющий на фотопроводимость вещества. Он возникает, когда электроны перераспределяются по полупроводникам и диэлектрикам в зависимости от их энергетического состояния и агрегатного - твёрдого или жидкого. Явление перераспределения происходит под влиянием света. Именно тогда увеличивается электропроводность вещества, т.е. получается эффект фотопроводимости.
  3. Вентильный фотоэффект - переход фотоэлектронов из своих тел в другие твёрдые тела (полупроводники) или жидкие (электролиты).

Внешний фотоэффект лежит в основе работы современных вакуумных фотоэлементов. Они изготавливаются в виде стеклянных колб, у которых внутренняя поверхность частично покрывается тонким слоем металлического напыления. Незначительная толщина слоя обеспечивает малый рабочий выход. Прозрачное окошко колбы пропускает внутрь свет, а находящийся внутри неё анод в виде проволочной петли или диска улавливает фотоэлектроны. Если анод соединить с положительным полюсом батареи, цепь замкнётся, по ней пойдёт электрический ток. Т.е. вакуумные фотоэлементы могут включать или выключать реле.

Комбинируя фотоэлементы и реле, можно создать различные «видящие» автоматы, к примеру, автомат в метро.

Итак, будучи заложен в основу многих производственных процессов, внешний фотоэффект как великое физическое открытие стал залогом успешной работы промышленной автоматики.

Теория

Фотоэффект - вырывание электронов из вещества под действием света. В металле электрон движется свободно, но при вылете его с поверхности сам металл из-за этого заряжается положительным зарядом и препятствует вылету. Поэтому для того, чтобы покинуть металл, электрон должен обладать дополнительной энергией, зависящей от вещества. Эта энергия называется работой выхода.

Для исследования фотоэффекта можно собрать установку, изображенную на рис. 1. Она состоит из стеклянного баллона, из которого выкачан воздух. Окно, через которое падает свет, сделано из кварцевого стекла, пропускающего видимые и ультрафиолетовые лучи. Внутри баллона впаяны два электрода: один из которых - катод - освещается через окно. Между электродами источник создает электрическое поле, которое заставляет двигаться фотоэлектроны от катода к аноду.

движущиеся электроны образуют электрический ток (фототок). При изменении напряжения меняется сила тока. График зависимости I от U - вольтамперная характеристика - приведен на рис. 2. При малых напряжениях не все вырванные из катода электроны достигают анода, при увеличении напряжения их число возрастает. При некотором напряжении все вырванные светом электроны достигают анода, тогда устанавливается ток насыщения I н , при дальнейшем увеличении напряжения ток не изменяется.

При увеличении интенсивности падающего излучения наблюдается возрастание тока насыщения, пропорционального числу вырванных электронов. 1-й закон фотоэффекта утверждает, что количество электронов, вырванных светом с поверхности металла, пропорционально поглощенной энергии световой волны.

Для измерения кинетической энергии электронов нужно поменять полярность источника тока. На графике этому случаю соответствует участок при U , на котором фототок падает до нуля. Теперь поле не разгоняет, а тормозит фотоэлектроны. При некотором напряжении, названном задерживающим U 3 , фототок исчезает. При этом все электроны будут остановлены полем, затем поле вернет их в бывший катод, подобно тому, как брошенный вверх камень будет остановлен полем тяготения Земли и возвращен снова на Землю.

Работа сил электрического поля A = qU 3 , затраченная на торможение электрона, равна изменению кинетической энергии электрона, то есть m v 2 /2 = qU 3 , где m - масса электрона, v - его скорость, q - заряд. Т.е., измеряя задерживающее напряжение U 3 , мы определяем максимальную кинетическую энергию. Оказалось, что максимальная кинетическая энергия электронов зависит не от интенсивности света, а только от частоты. Это утверждение называют 2-м законом фотоэффекта.

При некоторой граничной частоте света, которая зависит от конкретного вещества, и при более низких частотах фотоэффект не наблюдается. Эта граничная частота носит название "красной" границы фотоэффекта.

Объяснил законы фотоэффекта А. Эйнштейн в 1905 г. Он воспользовался идеей Планка о квантовой природе света. Энергия одного кванта света E = hν . Если предположить, что один квант света вырывает один электрон, то энергия кванта Е идет на совершение работы выхода электрона А и на сообщение ему кинетической энергии mv 2 /2 . То есть

hν = A + mv 2 /2 .

Это уравнение носит название уравнения Эйнштейна для фотоэффекта.

Объясним с позиций идеи Эйнштейна 1-й закон фотоэффекта. Если один квант энергии вырывает один электрон, то чем больше квантов поглощает вещество (чем больше интенсивность света), тем больше электронов вылетит из вещества.

Объясним второй закон фотоэффекта. Работа выхода А зависит от рода вещества и не зависит от частоты света. Кинетическая энергия электрона, вырванного из вещества, mv 2 /2=h - A зависит от частоты света ν : чем больше частота, тем большую кинетическую энергию получит электрон. Интенсивность света не влияет на кинетическую энергию электрона, потому что уравнение Эйнштейна описывает энергетику одного электрона. Не важно, сколько вылетит электронов, скорость каждого из них зависит от частоты.

Формула Эйнштейна объясняет и тот факт, что свет данной частоты из одного вещества может вырвать электрон, а из другого - не может. Для каждого вещества фотоэффект наблюдается в том случае, если энергия кванта света больше или, в крайнем случае, равна работе выхода (hν ≥ A ). Предельная частота, при которой еще возможен фотоэффект, ν min = A/h . Это частота, при которой совершается вырывание электронов без сообщения им кинетической энергии, - частота "красной границы" фотоэффекта.

Уравнение Эйнштейна запишем для случая, когда кинетическая энергия электрона равна по величине работе сил электрического поля, то есть при задерживающем напряжении:

hν = A + qU 3 .

Отсюда U 3 = -A/q + (h/q)ν.

Построим график зависимости задерживающего напряжения от частоты (рис. 3). Из формулы видно, что зависимость U 3 от ν является линейной. Тангенс угла наклона графика:

tg α = ΔU 3 /Δν = h/q .

Отсюда постоянная Планка:

h = qtg α = q ΔU 3 /Δν.

Эта формула служит для экспериментального определения постоянной Планка.

§ 3 . Фотоэффект

Внешний фотоэффект – это явление вырывания электронов из твердых и жидких тел под действием света.

Обнаружил явление фотоэффекта Генрих Герц (1857 – 1894) в 1887 году. Он заметил, что проскакивание искры между шариками разрядника значительно облегчается, если один из шариков осветить ультрафиолетовыми лучами.

Затем в1888-1890 -х годах фотоэффект исследовал Александр Григорьевич Столетов (1839 – 1896).

Он установил, что:

    наибольшее действие оказывают ультрафиолетовые лучи;

    с ростом светового потока растет фототок;

    заряд частиц, вылетающих из твердых и жидких тел под действием света отрицателен.

Параллельно со Столетовым фотоэффект исследовал немецкий ученый Филипп Ленард (1862 – 1947).

Они и установили основные законы фотоэффекта.

Прежде чем сформулировать эти законы, рассмотрим современную схему для наблюдения и исследования фотоэффекта. Она проста. В стеклянных баллон впаяны два электрода (катод и анод), на которые подается напряжениеU. В отсутствии света амперметр показывает, что тока в цепи нет.

Когда катод освещается светом даже при отсутствии напряжения между катодом и анодом амперметр показывает наличие небольшого тока в цепи – фототока. То есть электроны, вылетевшие из катода, обладают некоторой кинетической энергией
и достигают анода «самостоятельно».

При увеличении напряжения фототок растет.

Зависимость величины фототока от величины напряжения между катодом и анодом называется вольтамперной характеристикой.

Она имеет следующий вид. При одной и той же интенсивности монохроматического света с ростом напряжения ток сначала растет, но затем его рост прекращается.Начиная с некоторого значения ускоряющего напряжения, фототок перестает изменяться, достигая своего максимального (при данной интенсивности света) значения. Этот фототок называется током насыщения.

Чтобы «запереть» фотоэлемент, то есть фототок уменьшить до нуля, необходимо подать «запирающее напряжение»
. В этом случае электростатическое поле совершает работу и тормозит вылетевшие фотоэлектроны

. (1)

Это означает, что ни один из вылетающих из металла электронов не достигает анода, если потенциал анода ниже потенциала катода на величину
.

Эксперимент показал, чтопри изменении частоты падающего света начальная точка графика сдвигается по оси напряжений. Из этого следует, что величина запирающего напряжения, а, следовательно, кинетическая энергия и максимальная скорость вылетающих электронов, зависят от частоты падающего света.

Первый закон фотоэффекта . Величина максимальной скорости вылетающих электронов зависит от частоты падающего излучения (растет с ростом частоты) и не зависит от его интенсивности.

Если сравнить вольтамперные характеристики, полученные при разных значениях интенсивности (на рисункеI 1 и I 2) падающего монохроматического (одночастотного) света, то можно заметить следующее.

Во-первых, все вольтамперные характеристики берут начало в одной и той же точке, то есть, при любой интенсивности света фототок обращается в ноль при конкретном (для каждого значения частоты) задерживающем напряжении
. Это является еще одним подтверждением верности первого закона фотоэффекта.

Во-вторых. При увеличении интенсивности падающего света характер зависимости тока от напряжения не изменяется, лишь увеличивается величина тока насыщения.

Второй закон фотоэффекта . Величина тока насыщения пропорциональная величине светового потока.

При изучении фотоэффекта было установлено, что не всякое излучение вызывает фотоэффект.

Третий закон фотоэффекта . Для каждого вещества существует минимальная частота (максимальная длина волны) при которой еще возможен фотоэффект.

Эту длину волны называют «красной границей фотоэффекта» (а частоту – соответствующей красной границе фотоэффекта).

Через 5 лет после появления работы Макса Планка Альберт Эйнштейн использовал идею дискретности излучения света для объяснения закономерностей фотоэффекта. эйнштейн предположил, что свет не только излучается порциями, но и распространяется и поглощается порциями. Это означает, что дискретность электромагнитных волн – это свойство самого излучения, а не результат взаимодействия излучения с веществом. По Эйнштейну, квант излучения во многом напоминает частицу. Квант либо поглощается целиком, либо не поглощается вовсе. Эйнштейн представил вылет фотоэлектрона как результат столкновения фотона с электроном металла, при котором вся энергия фотона передается электрону. Так Эйнштейн создал квантовую теорию света и, исходя из нее, написал уравнение для фотоэффекта:

.

Здесь – постоянная Планка,– частота,
– работа выхода электрона из металла,
– масса покоя электрона,v – скорость электрона.

Это уравнение объясняло все экспериментально установленные законы фотоэффекта.

    Так как работа выхода электрона из вещества постоянна, то, с ростом частоты, растет и скорость электронов.

    Каждый фотон выбивает один электрон. Следовательно, количество выбитых электронов не может быть больше числа фотонов. Когда все выбитые электроны достигнут анода, фототок расти прекращает. С ростом интенсивности света растет и число фотонов, падающих на поверхность вещества. Следовательно, увеличивается число электронов, которые эти фотоны выбивают. При этом растет фототок насыщения.

    Если энергии фотоны хватает лишь на совершение работы выхода, то скорость вылетающий электронов будет равна нулю. Это и есть «красная граница» фотоэффекта.

Внутренний фотоэффект наблюдается в кристаллических полупроводниках и диэлектриках. Он состоит в том, что под действием облучения увеличивается электропроводность этих веществ за счет возрастания в них числа свободных носителей тока (электронов и дырок).

Иногда это явление называют фотопроводимостью.

1. История открытия фотоэффекта

2. Законы Столетова

3. Уравнение Эйнштейна

4. Внутренний фотоэффект

5. Применение явления фотоэффекта

Введение

Многочисленные оптические явления непротиворечиво объясняли, исходя из представлений о волновой природе света. Однако в конце XIX – начале XX в. были открыты и изучены такие явления, как фотоэффект, рентгеновское излучение, эффект Комптона, излучение атомов и молекул, тепловое излучение и другие, объяснение которых с волновой точки зрения оказалось невозможным. Объяснение новых экспериментальных фактов было получено на основе корпускулярных представлений о природе света. Возникла парадоксальная ситуация, связанная с применением совершенно противоположных физических моделей волны и частицы для объяснения оптических явлений. В одних явлениях свет проявлял волновые свойства, в других – корпускулярные.

Среди разнообразных явлений, в которых проявляется воздействие света на вещество, важное место занимаетфотоэлектрический эффект , то есть испускание электронов веществом под действием света. Анализ этого явления привел к представлению о световых квантах и сыграл чрезвычайно важную роль в развитии современных теоретических представлений. Вместе с тем фотоэлектрический эффект используется в фотоэлементах получивших исключительно широкое применение в разнообразнейших областях науки и техники и обещающих еще более богатые перспективы.

История открытия фотоэффекта

Открытие фотоэффекта следует отнести к 1887 г., когда Герц обнаружил, что освещение ультрафиолетовым светом электродов искрового промежутка, находящегося под напряжением, облегчает проскакивание искры между ними.

Явление, обнаруженное Герцом, можно наблюдать на следующем легко осуществимом опыте (рис. 1).

Величина искрового промежутка F подбирается таким образом, что в схеме, состоящей из трансформатора Т и конденсатора С, искра проскакивает с трудом (один – два раза в минуту). Если осветить электроды F, сделанные из чистого цинка, светом ртутной лампы Hg, то разряд конденсатора значительно облегчается: искра начинает проскакивать Рис. 1. Схема опыта Герца.



Фотоэффект был объяснён в 1905 году Альбертом Эйнштейном (за что в 1921 году он получил Нобелевскую премию) на основе гипотезы Макса Планка о квантовой природе света. В работе Эйнштейна содержалась важная новая гипотеза – если Планк предположил, что свет излучается только квантованными порциями, то Эйнштейн уже считал, что свет и существует только в виде квантовых порций. Из представления о свете как о частицах (фотонах) немедленно следует формула Эйнштейна для фотоэффекта:

где – кинетическая энергия вылетающего электрона, – работа выхода для данного вещества, – частота падающего света, – постоянная Планка, которая оказалась ровно той же, что и в формуле Планка для излучения абсолютно чёрного тела.

Из этой формулы следует существование красной границы фотоэффекта. Таким образом, исследования фотоэффекта были одними из самых первых квантово – механических исследований.

Законы Столетова

Впервые (1888–1890), подробно анализируя явление фотоэффекта, русский физик А.Г. Столетов получил принципиально важные результаты. В отличие от предыдущих исследователей он брал малую разность потенциалов между электродами. Схема опыта Столетова представлена на рис. 2.

Два электрода (один в виде сетки, другой – плоский), находящиеся в вакууме, присоединены к батарее. Включенный в цепь амперметр служит для измерения возникающей силы тока. Облучая катод светом различных длин волн, Столетов пришел к выводу, что наиболее эффективное действие оказывают ультрафиолетовые лучи. Кроме того, было установлено, что сила тока, возникающего под действием света, прямо пропорциональна его интенсивности.

В 1898 г. Ленард и Томсон методом отклонения зарядов в электрическом и магнитном полях определили удельный заряд заряженных частиц, вырываемых Рис. 2. Схема опыта Столетова.

светом из катода, и получили выражение

СГСЕ ед. з/г, совпадающее с известным удельным зарядом электрона. Отсюда следовало, что под действием света происходит вырывание электронов из вещества катода.

Путем обобщения полученных результатов были установлены следующие закономерности фотоэффекта:

1. При неизменном спектральном составе света сила фототока насыщения прямо пропорциональна падающему на катод световому потоку.

2. Начальная кинетическая энергия вырванных светом электронов линейно растет с ростом частоты света и не зависит от его интенсивности.

3. Фотоэффект не возникает, если частота света меньше некоторой характерной для каждого металла величины , называемой красной границей.

Первую закономерность фотоэффекта, а также возникновение самого фотоэффекта легко объяснить, исходя из законов классической физики. Действительно, световое поле, воздействуя на электроны внутри металла, возбуждает их колебания. Амплитуда вынужденных колебаний может достичь такого значения, при котором электроны покидают металл; тогда и наблюдается фотоэффект.

Ввиду того, что согласно классической теории интенсивность света прямо пропорциональна квадрату электрического вектора, число вырванных электронов растет с увеличением интенсивности света.

Вторая и третья закономерности фотоэффекта законами классической физики не объясняются.

Изучая зависимость фототока (рис. 3), возникающего при облучении металла потоком монохроматического света, от разности потенциалов между электродами (такая зависимость обычно называется вольт – амперной характеристикой фототока), установили, что: 1) фототок возникает не только при , но и при ; 2) фототок отличен от нуля до строго определенного для данного металла отрицательного значения разности потенциалов , так называемого задерживающего потенциала; 3) величина запирающего (задерживающего) потенциала не зависит от интенсивности падающего света; 4) фототок растет с уменьшением абсолютного значения задерживающего потенциала; 5) величина фототока растет с ростом и с какого-то определенного значения фототок (так называемый ток насыщения) становится постоянным; 6) величина тока насыщения растет с увеличением интенсивности падающего света; 7) величина задерживающего Рис. 3. Характеристика

потенциала зависит от частоты падающего света; фототока.

8) скорость вырванных под действием света электронов не зависит от интенсивности света, а зависит только от его частоты.

Уравнение Эйнштейна

Явление фотоэффекта и все его закономерности хорошо объясняются с помощью квантовой теории света, что подтверждает квантовую природу света.

Как уже было отмечено, Эйнштейн (1905 г.), развивая квантовую теорию Планка, выдвинул идею, согласно которой не только излучение и поглощение, но и распространение света происходит порциями (квантами), энергия и импульс которых:

где – единичный вектор, направленный по волновому вектору. Применяя к явлению фотоэффекта в металлах закон сохранения энергии, Эйнштейн предложил следующую формулу:

, (1)

где - работа выхода электрона из металла, – скорость фотоэлектрона. Согласно Эйнштейну, каждый квант поглощается только одним электроном, причем часть энергии падающего фотона тратится на совершение работы выхода электрона металла, оставшаяся же часть сообщает электрону кинетическую энергию .

Как следует из (1), фотоэффект в металлах может возникнуть только при , в противном случае энергия фотона будет недостаточной для вырывания электрона из металла. Наименьшая частота света , под действием которого происходит фотоэффект, определяется, очевидно, из условия

Частота света, определяемая условием (2), называется «красной границей» фотоэффекта. Слово «красная» не имеет никакого отношения к цвету света, при котором происходит фотоэффект. В зависимости от рода металлов «красная граница» фотоэффекта может соответствовать красному, желтому, фиолетовому, ультрафиолетовому свету и т. д.

С помощью формулы Эйнштейна можно объяснить и другие закономерности фотоэффекта.

Положим, что , т. е. между анодом и катодом существует тормозящий потенциал. Если кинетическая энергия электронов достаточна, то они, преодолев тормозящее поле, создают фототок. В фототоке участвуют те электроны, для которых удовлетворяется условие . Величина задерживающего потенциала определяется из условия

, (3)

где – максимальная скорость вырванных электронов. Рис. 4.

Подставив (3) в (1), получим

Таким образом, величина задерживающего потенциала не зависит от интенсивности, а зависит только от частоты падающего света.

Работу выхода электронов из металла и постоянную Планка можно определить, построив график зависимости от частоты падающего света (рис. 4). Как видно, и отрезок, отсекаемый от оси потенциала, дает .

Ввиду того, что интенсивность света прямо пропорциональна количеству фотонов, увеличение интенсивности падающего света приводит к увеличению числа вырванных электронов, т. е. к увеличению фототока.

Формула Эйнштейна для фотоэффекта в неметаллах имеет вид

.

Наличие – работы отрыва связанного электрона от атома внутри неметаллов – объясняется тем, что в отличие от металлов, где имеются свободные электроны, в неметаллах электроны находятся в связанном с атомами состоянии. Очевидно, при падении света на неметаллы часть световой энергии тратится на фотоэффект в атоме – на отрыв электрона от атома, а оставшаяся часть тратится на работу выхода электрона и сообщение электрону кинетической энергии.

Электроны проводимости не покидают самопроизвольно металл в заметном количестве. Это объясняется тем, что металл представляет для них потенциальную яму. Покинуть металл удается только тем электронам, энергия которых оказывается достаточной для преодоления потенциального барьера, имеющегося на поверхности. Силы, обуславливающие этот барьер, имеют следующее происхождение. Случайное удаление электрона от наружного слоя положительных ионов решетки приводит к возникновению в том месте, которое покинул электрон, избыточного положительного заряда. Кулоновское взаимодействие с этим зарядом заставляет электрон, скорость которого не очень велика, вернуться обратно. Таким образом, отдельные электроны все время покидают поверхность металла, удаляются от нее на несколько межатомных расстояний и затем поворачивают обратно. В результате металл оказывается окруженным тонким облаком электронов. Это облако образует совместно с наружным слоем ионов двойной электрический слой (рис. 5; кружки – ионы, черные точки – электроны). Силы, действующие на электрон в таком слое,направлены внутрь металла. Работа, совершаемая против этих сил при переводе электрона из металла наружу, идет на увеличение потенциальной энергии электрона (рис. 5).

Таким образом, потенциальная энергия валентных электронов внутри металла меньше, чем вне металла, на величину, равную глубине потенциальной ямы (рис. 6). Изменение энергии происходит на длине порядка нескольких межатомных расстояний, поэтому стенки ямы можно считать вертикальными.

Потенциальная энергия электрона Рис. 6.

и потенциал той точки, в которой находится электрон, имеют противоположные знаки. Отсюда следует, что потенциал внутри металла больше, чем потенциал в непосредственной близости к его поверхности, на величину .

Сообщение металлу избыточного положительного заряда увеличивает потенциал как на поверхности, так и внутри металла. Потенциальная энергия электрона соответственно уменьшается (рис. 7, а).

За начало отсчета приняты значения потенциала и потенциальной энергии на бесконечности. Сообщение отрицательного заряда понижает потенциал внутри и вне металла. Соответственно потенциальная энергия электрона возрастает (рис. 7, б).

Полная энергия электрона в металле слагается из потенциальной и кинетической энергий. При абсолютном нуле значения кинетической энергии электронов проводимости заключены в пределах от нуля до совпадающей с уровнем ферми энергии . На рис. 8 энергетические уровни зоны проводимости вписаны в потенциальную яму (пунктиром изображены незанятые при 0К уровни). Для удаления за пределы металла разным электронам нужно сообщить не одинаковую энергию. Так, электрону, находящемуся на самом нижнем уровне зоны проводимости, необходимо сообщить энергию ; для электрона, находящегося на уровне Ферми, достаточна энергия .

Наименьшая энергия, которую необходимо сообщить электрону для того, чтобы удалить его из твердого или жидкого тела в вакуум, называется работой выхода. Работа выхода электрона из металла определяется выражением

Мы получили это выражение в предположении, что температура металла равна 0К. При других температурах работу выхода также определяют как разность глубины потенциальной ямы и уровня Ферми, т. е. распространяют определение (4) на любые температуры. Это же определение применяется и для полупроводников.

Уровень Ферми зависит от температуры. Кроме того, из – за обусловленного тепловым расширением изменения средних расстояний между атомами слегка изменяется глубина потенциальной ямы . Это приводит к тому, что работа выхода немного зависит от температуры.

Работа выхода очень чувствительна к состоянию поверхности металла, в частности к ее чистоте. Подобрав надлежащим образом Рис. 8.

покрытие поверхности, можно сильно снизить работу выхода. Так, например, нанесение на поверхность вольфрама слоя окисла щелочноземельного металла (Ca, Sr, Ba) снижает работу выхода с 4,5 эВ (для чистого W) до 1,5 – 2 эВ.

Внутренний фотоэффект

Выше мы говорили об освобождении электронов из освещаемой поверхности вещества и переходе их в другую среду, в частности в вакуум. Такое испускание электронов называют фотоэлектронной эмиссией , а само явление внешним фотоэффектом. Наряду с ним известен также и широко используется в практических целях так называемый внутренний фотоэффект , при котором, в отличие от внешнего, оптически возбужденные электроны остаются внутри освещенного тела, не нарушая нейтральности последнего. При этом в веществе изменяется концентрация носителей заряда или их подвижность, что приводит к изменению электрических свойств вещества под действием падающего на него света. Внутренний фотоэффект присущ только полупроводникам и диэлектрикам. Его можно обнаружить, в частности, по изменению проводимости однородных полупроводников при их освещении. На основе этого явления – фотопроводимости создана и постоянно совершенствуется большая группа приемников света – фоторезисторов . Для них используется в основном селенид и сульфид кадмия.

В неоднородных полупроводниках наряду с изменением проводимости наблюдается также образование разности потенциалов (фото – э.д.с.). Это явление (фотогальванический эффект) обусловлено тем, что в силу однородностей проводимости полупроводников происходит пространственное разделение внутри объема проводника оптически возбужденных электронов, несущих отрицательный заряд и микрозон (дырок), возникающих в непосредственной близости от атомов, от которых оторвались электроны, и подобно частицам несущих положительный элементарный заряд. Электроны и дырки концентрируются на разных концах полупроводника, вследствие чего и возникает электродвижущая сила, благодаря которой и вырабатывается без приложения внешней э.д.с. электрический ток в нагрузке, подключенной параллельно освещенному полупроводнику. Таким образом достигается прямое преобразование световой энергии в электрическую. Именно по этой причине фотогальванические приемники света и используются не только для регистрации световых сигналов, Нои в электрических цепях как источники электрической энергии.

Основные промышленно выпускаемые типы таких приемников работают на основе селена и сернистого серебра. Весьма распространен также кремний, германий и ряд соединений – GaAs, InSb, CdTeи другие. Фотогальванические элементы, используемые для преобразования солнечной энергии в электрическую, приобрели особенно широкое применение в космических исследованиях как источники бортового питания. Они обладают относительно высоким коэффициентом полезного действия (до 20 %), весьма удобны в условиях автономного полета космического корабля. В современных солнечных элементах в зависимости от полупроводникового материала фото – э.д.с. достигает 1 – 2 В, съем тока с – нескольких десятков миллиампер, а на 1 кг массы выходная мощность достигает сотен ватт.

Cтраница 1


Явление фотоэффекта, открытое в 1887 г. Герцем и детально исследованное А. Г. Столетовым, состоит в том, что металлы (или полупроводники) при действии на них света испускают электроны. Объяснить фотоэффект исходя из волновой теории света невозможно. Однако вылет электронов наблюдается сразу же после освещения металла. Кроме того, согласно волновой теории, энергия Е3 электронов, испускаемых металлом, должна быть пропорциональна интенсивности падающего света. Однако было установлено, что Еэ от интенсивности света не зависит, а зависит от его частоты, увеличиваясь с ростом v; возрастание интенсивности приводит лишь к увеличению числа вылетающих из металла электронов.  


Явление фотоэффекта заключается в вырывании электронов из вещества падающим на него светом. Основные черты этого явления сводятся к следующему. Пучок света, падающий на поверхность металла, освобождает из металла электроны при условии, что частота света выше определенного критического значения, зависящего от рода металла. Количество вырываемых в единицу времени электронов при неизменном спектральном составе излучения пропорционально падающему на поверхность металла световому потоку.  

Статические характеристики германиевого фотодиода.  

Явление фотоэффекта можно использовать также в р-п-переходе, на который подано обратное напряжение.  

Явление фотоэффекта обнаруживается при освещении цинковой пластины, соединенной со стержнем электрометра.  

Явление фотоэффекта, открытое в 1889 г. А. Г. Столетовым, состоит в том, что металлы (или полупроводники) при действии на них света испускают электроны. Объяснить фотоэффект, исходя из волновой теории света, невозможно. Однако вылет электронов наблюдается сразу же после освещения металла. Кроме того, согласно волновой теории, энергия Еа электронов, испускаемых металлом, должна быть пропорциональна интенсивности падающего света. Однако было установлено, что Еэ от интенсивности света не зависит, а зависит от его частоты, увеличиваясь с ростом v; возрастание интенсивности приводит лишь к увеличению числа вылетающих из металла электронов.  

Явление фотоэффекта, открытое А. Г. Столетовым в 1888 г., заключается в том, что под действием света с поверхности различных тел вырываются электроны, вследствие чего данное тело приобретает заряд. Причем это явление наблюдается только при условии, если энергия светового кванта больше работы, необходимой для отрыва электрона с поверхности данного вещества, и сообщения ему некоторой кинетической энергии.  

Явление фотоэффекта состоит в том, что лучи света, падая на любое тело (независимо от его химической природы и физического состояния), выбивают из него электроны.  

Явление фотоэффекта было впервые обнаружено в 1819 г. русским химиком Гротгусом.  


Впервые явление фотоэффекта было замечено Герцем в 1887 г. Герц обнаружил, что облучение искрового промежутка ультрафиолетовыми лучами облегчает разряд.  

Сущность явления фотоэффекта состоит в том, что при освещении поверхности металлов или полупроводников частицы лучистой энергии проникают в поверхностные слои освещенного тела и сообщают его электронам дополнительную энергию. В результате этого электроны освещенного тела начинают двигаться с большими скоростями и выходят со своих обычных орбит движения. Это явление убыстрения движения электронов освещенного тела под действием лучистой энергии и названо явлением фотоэффекта.  

В явлении фотоэффекта электроны, вырываемые с поверхности металла излучением частотой 2 - 104 Гц, полностью задерживаются тормозящим полем при разности потенциалов 7 В, а при частоте 4 - Ю1 Гц - при разности потенциалов 15 В.