Какая величина является векторной, а какая скалярной? Просто о сложном. Векторная величина в физике. Примеры векторных величин

Все величины, с которыми нам приходится встречаться в физике и, в частности, в одном из ее разделов механики, можно разделить на два типа:

а) скалярные, которые определяются одним действительным положительным или отрицательным числом. Примером таких величин могут служить время, температура;

б) векторные, которые определяются направленным пространственным отрезком прямой (или тремя скалярными величинами) и обладают свойствами, приведенными ниже.

Примером векторных величин служат сила, скорость, ускорение.

Декартова система координат

Когда речь идет о направленных отрезках, то следует указать объект, по отношению к которому это направление определяется. В качестве такого объекта принимается декартова система координат, составляющими которой являются оси.

Осью называется прямая, на которой указано направление. Три взаимно перпендикулярные оси, пересекающиеся в точке О, названные соответственно образуют прямоугольную декартову систему координат. Декартова система координат может быть правой (рис. 1) или левой (рис. 2). Эти системы являются зеркальным изображением друг друга и не могут быть совмещены каким-либо перемещением.

Во всем дальнейшем изложении всюду принимается правая система координат. В правой системе координат положительное направление отсчета всех углов принимается против часовой стрелки.

Это соответствует направлению совмещения осей х с у, если глядеть с положительного направления оси

Свободные векторы

Вектор, характеризуемый только длиной и направлением в заданной системе координат, носит название свободного. Свободный вектор изображается отрезком заданной длины и направления, начало которого расположено в любой точке пространства. На чертеже вектор изображается стрелкой (рис. 3).

Векторы обозначаются одной жирной буквой или двумя буквами, соответствующими началу и концу стрелки с черточкой над ними или

Величину вектора называют его модулем и обозначают одним из указанных способов

Равенство векторов

Так как основными характеристиками вектора считаются его длина и направление, то векторы называются равными, если их направления и величины совпадают. В частном случае равные векторы могут быть направлены вдоль одной прямой. Равенство векторов, например а и b (рис. 4), записывается в виде:

Если векторы (а и b) равны по модулю, но диаметрально противо положны по направлению (рис. 5), то это записывается в виде:

Векторы, имеющие одинаковое или диаметрально противоположное направление, называются коллинеарными.

Умножение вектора на скаляр

Произведение вектора а на скаляр К называется вектор по модулю, равный совпадающий по направлению с вектором а, если К положительно, и диаметрально ему противоположный, если К отрицательно.

Единичный вектор

Вектор, у которого модуль равен единице и направление совпадает с заданным вектором а, называется единичным вектором данного вектора или его ортом. Орт обозначается . Всякий вектор через его орт можно представить в виде

Единичные векторы, расположенные вдоль положительных направлений координатных осей, обозначаются соответственно (рис. 6).

Сложение векторов

Правило сложения векторов постулируется (оправданием для этого постулата служат наблюдения над реальными объектами векторной природы). Этот постулат заключается в том, что два вектора

Переносят в какую-либо точку пространства так, чтобы начала их совпадали (рис. 7). Направленная диагональ параллелограмма, построенного на этих векторах (рис. 7), называется суммой векторов сложение векторов записывается в виде

и носит название сложения по правилу параллелограмма.

Указанное правило сложения векторов можно осуществить еще и следующим образом: в любой точке пространства откладывается вектор далее, от конца вектора откладывается вектор (рис. 8). Вектор а, начало которого совпадает с началом вектора а конец - с концом вектора будет суммой векторов

Последнее правило сложения векторов удобно, если нужно сложить более чем два вектора. Действительно, если нужно сложить несколько векторов, то, используя указанное правило, следует построить ломаную, сторонами которой являются заданные векторы, причем начало какого-либо вектора совпадает с концом предыдущего вектора. Суммой этих векторов будет вектор, начало которого совпадает с началом первого вектора, а конец совпадает с концом последнего вектора (рис. 9). Если заданные векторы образуют замкнутый многоугольник, то говорят, что сумма векторов равна нулю.

Из правила построения суммы векторов следует, что сумма их не зависит от порядка, в котором взяты слагаемые, или сложение векторов коммутативно. Для двух векторов последнее может быть записано в виде:

Вычитание векторов

Вычитание вектора из вектора производится по следующему правилу: строится вектор и из конца его откладывается вектор - (рис. 10). Вектор а, начало которого совпадает с началом

вектора а конец - с концом вектора равен разности векторов и Проведенная операция может быть записана в виде:

Разложение вектора на составляющие

Разложить заданный вектор - это значит представить его как сумму нескольких векторов, которые называются его составляющими.

Рассмотрим задачу о разложении вектора а, если задано, что составляющие его должны быть направлены по трем координатным осям. Для этого построим параллелепипед, диагональю которого является вектор а и ребра параллельны координатным осям (рис. 11). Тогда, как очевидно из чертежа, сумма векторов расположенных по ребрам этого параллелепипеда, дает вектор а:

Проекция вектора на ось

Проекцией вектора на ось называется величина направленного отрезка, который ограничивают плоскости, перпендикулярные к оси, проходящие через начало и конец вектора (рис. 12). Точки пересечения указанных плоскостей с осью (А и В) называются проекцией соответственно начала и конца вектора.

Проекция вектора имеет знак плюс, если направления ее, считая от проекции начала вектора к проекции его конца, совпадают с направлением оси. Если эти направления не совпадают то проекция имеет знак минус.

Проекции вектора а на оси координат обозначаются соответственно

Координаты вектора

Составляющие вектора а, расположенные параллельно координатным осям через проекции вектора и единичные векторы могут быть записаны в виде:

Следовательно:

где полностью определяют вектор и носят название его координат.

Обозначая через углы, которые составляет вектор а с осями координат, проекции вектора а на оси можно записать в виде:

Отсюда для модуля вектора а имеем выражение:

Так как задание вектора его проекциями однозначно, то два равных вектора будут иметь равные координаты.

Сложение векторов через их координаты

Как следует из рис. 13, проекция суммы векторов на ось равна алгебраической сумме их проекций. Следовательно, из векторного равенства:

вытекают три следующих скалярных равенства:

или координаты суммарного вектора равны алгебраической сумме координат составляющих векторов.

Скалярное произведение двух векторов

Скалярное произведение двух векторов обозначается а b и определяется произведением их модулей на косинус угла между ними:

Скалярное произведение двух векторов можно также определить как произведение модуля одного из векторов на проекцию другого вектора на направление первого вектора.

Из определения скалярного произведения следует, что

т. е. имеет место переместительный закон.

По отношению к сложению скалярное произведение обладает свойством распределительности:

что непосредственно следует из свойства - проекция суммы векторов равна алгебраической сумме их проекций.

Скалярное произведение через проекции векторов можно записать в виде:

Векторное произведение двух векторов

Векторное произведение двух векторов обозначается axb. Это есть вектор с, модуль которого равен произведению модулей перемножаемых векторов на синус угла между ними:

Вектор с направлен перпендикулярно к плоскости, определяемой векторами а и b так, что если смотреть с конца вектора с, то для кратчайшего совмещения вектора а с вектором b первый вектор надо было вращать в положительном направлении (против часовой стрелки; рис. 14). Вектор, представляющий собой векторное произведение двух векторов, называется аксиальным вектором (или псевдовектором). Его направление зависит от выбора системы координат или условия о положительности направления отсчета углов. Указанное направление вектора с соответствует правой системе декартовых осей координат, выбор которой был оговорен ранее.

В физике существует несколько категорий величин: векторные и скалярные.

Что такое векторная величина?

Векторная величина имеет две основные характеристики: направление и модуль . Два вектора будут одинаковыми, если их значение по модулю и направление совпадают. Для обозначения векторной величины чаще всего используют буквы, над которыми отображается стрелочка. В качестве примера векторной величины можно привести силу, скорость или ускорение.

Для того, чтобы понять сущность векторной величины, следует рассмотреть ее с геометрической точки зрения. Вектор представляет собой отрезок, имеющий направление. Длина такого отрезка соотносится со значением его модуля. Физическим примером векторной величины является смещение материальной точки, перемещающейся в пространстве. Такие параметры, как ускорение этой точки, скорость и действующие на нее силы, электромагнитного поля тоже будут отображаться векторными величинами.

Если рассматривать векторную величину независимо от направления, то такой отрезок можно измерить. Но, полученный результат будет отображать только лишь частичные характеристики величины. Для ее полного измерения следует дополнить величину другими параметрами направленного отрезка.

В векторной алгебре существует понятие нулевого вектора . Под этим понятием подразумевается точка. Что касается направления нулевого вектора, то оно считается неопределенным. Для обозначения нулевого вектора используется арифметический нуль, набранный полужирным шрифтом.

Если проанализировать все вышесказанное, то можно сделать вывод, что все направленные отрезки определяют вектора. Два отрезка будут определять один вектор только в том случае, если они являются равными. При сравнении векторов действует тоже правило, что и при сравнении скалярных величин. Равенство означает полное совпадение по всем параметрам.

Что такое скалярная величина?

В отличие от вектора, скалярная величина обладает только лишь одним параметром – это ее численное значение . Стоит отметить, что анализируемая величина может иметь как положительное численное значение, так и отрицательное.

В качестве примера можно привести массу, напряжение, частоту или температуру. С такими величинами можно выполнять различные арифметические действия: сложение, деление, вычитание, умножение. Для скалярной величины такая характеристика, как направление, не свойственна.

Скалярная величина измеряется числовым значением, поэтому ее можно отображать на координатной оси. Например, очень часто строят ось пройденного пути, температуры или времени.

Основные отличия между скалярными и векторными величинами

Из описаний, приведенных выше, видно, что главное отличие векторных величин от скалярных заключается в их характеристиках . У векторной величины есть направление и модуль, а у скалярной только численное значение. Безусловно, векторную величину, как и скалярную, можно измерить, но такая характеристика не будет полной, так как отсутствует направление.

Для того, чтобы более четко представить отличие скалярной величины от векторной, следует привести пример. Для этого возьмем такую область знаний, как климатология . Если сказать, что ветер дует со скоростью 8 метров в секунду, то будет введена скалярная величина. Но, если сказать, что северный ветер дует со скоростью 8 метров в секунду, то речь пойдет о векторном значении.

Векторы играют огромную роль в современной математике, а также во многих сферах механики и физики. Большинство физических величин может быть представлено в виде векторов. Это позволяет обобщить и существенно упростить используемые формулы и результаты. Часто векторные значения и векторы отождествляются друг с другом. Например, в физике можно услышать, что скорость или сила является вектором.

В математике вектор - это направленный отрезок определенной длины. В физике под векторной величиной понимают полную характеристику некоторой физической величины, которая обладает модулем и направлением действия. Рассмотрим основные свойства векторов, а также примеры физических величин, которые являются векторными.

Скаляры и вектора

Скалярные величины в физике являются параметрами, которые могут быть измерены и представлены одним числом. Например, температура, масса и объем являются скалярами, поскольку они измеряются числом градусов, килограмм и кубических метров соответственно.

В большинстве же случаев оказывается, что число, определяющее скалярную величину, не несет исчерпывающей информации. Например, рассматривая такую физическую характеристику, как ускорение, будет недостаточно сказать, что оно равно 5 м/с 2 , поскольку нужно знать, куда оно направлено, против скорости движения тела, под некоторым углом к этой скорости или иначе. Помимо ускорения, примером векторной величины в физике является скорость. Также в эту категорию входят сила, напряженность электрического поля и многое другие.

Согласно определению векторной величины как направленного в пространстве отрезка, она может быть представлена в виде набора чисел (компонент вектора), если ее рассматривать в определенной системе координат. Чаще всего в физике и математике возникают задачи, которые для описания вектора требуют знания его двух (задачи на плоскости) или трех (задачи в пространстве) компонентов.

Определение вектора в n-мерном пространстве

В n-мерном пространстве, где n - целое число, вектор будет однозначно определен, если известны его n компонент. Каждая компонента представляет собой координату конца вектора вдоль соответствующей оси координат при условии, что начало вектора находится в начале системы координат n-мерного пространства. В итоге вектор может быть представлен так: v = {a 1 , a 2 , a 3 , ..., a n }, где a 1 - скалярное значение 1-й компоненты вектора v. Соответственно, в 3-х мерном пространстве вектор запишется как v = {a 1 , a 2 , a 3 }, а в 2-х мерном - v = {a 1 , a 2 }.

Как обозначается векторная величина? Любой вектор в 1-мерном, 2-мерном и 3-мерном пространствах можно представить как направленный отрезок, лежащий между точками A и B. В этом случае он обозначается как AB → , где стрелка показывает, что речь идет о векторной величине. Последовательность букв принято указывать от начала вектора к его концу. Это означает, что если координаты точек A и B, например, в 3-мерном пространстве, равны {x 1 , y 1 , z 1 } и {x 2 , y 2 , z 2 } соответственно, тогда компоненты вектора AB → будут равны {x 2 -x 1 , y 2 -y 1 , z 2 -z 1 }.

Графическое представление вектора

На рисунках принято изображать векторную величину в виде отрезка, на его конце имеется стрелочка, указывающая направление действия физической величины, представлением которой она является. Этот отрезок обычно подписывают, например, v → или F → , чтобы было понятно, о какой характеристике идет речь.

Графическое представление вектора помогает понять, куда приложена и в каком направлении действует физическая величина. Кроме того, многие математические операции над векторами удобно совершать, используя их изображения.

Математические операции над векторами

Векторные величины, так же как и обычные числа, можно складывать, вычитать и умножать как друг с другом, так и с другими числами.

Под суммой двух векторов понимают третий вектор, который получается, если суммируемые параметры расположить так, чтобы конец первого совпадал с началом второго вектора, а затем, соединить начало первого и конец второго. Для выполнения этого математического действия разработаны три основных метода:

  1. Метод параллелограмма, заключающийся в построении геометрической фигуры на двух векторах, которые выходят из одной и той же точки пространства. Диагональ этого параллелограмма, которая выходит из общей точки начала векторов, будет являться их суммой.
  2. Метод многоугольника, суть которого состоит в том, что начало каждого последующего вектора следует располагать в конце предыдущего, тогда суммарный вектор будет соединять начало первого и конец последнего.
  3. Аналитический метод, который состоит в попарном сложении соответствующих компонент известных векторов.

Что касается разницы векторных величин, то ее можно заменить сложением первого параметра с тем, который противоположен по направлению второму.

Умножение вектора на некоторое число A выполняется по простому правилу: на это число следует умножить каждую компоненту вектора. В результате получается также вектор, модуль которого в A раз больше исходного, а направление либо совпадает, либо противоположно исходному, все зависит от знака числа A.

Делить вектор или число на него нельзя, а вот деление вектора на число A аналогично умножению на число 1/A.

Скалярное и векторное произведения

Умножение векторов можно выполнять двумя различными способами: скалярно и векторно.

Скалярным произведением векторных величин называется такой способ их умножения, результатом которого является одно число, то есть скаляр. В матричном виде скалярное произведение записывается как строки компонента 1-го вектора на столбец компонент 2-го. В итоге в n-мерном пространстве получается формула: (A → *B →) = a 1 *b 1 +a 2 *b 2 +...+a n *b n .

В 3-мерном пространстве можно определить скалярное произведение иначе. Для этого нужно умножить модули соответствующих векторов на косинус угла между ними, то есть (A → *B →) = |A → |*|B → |*cos(θ AB). Из этой формулы следует, что если вектора направлены в одном направлении, то скалярное произведение равно умножению их модулей, а если вектора перпендикулярны друг другу, тогда оно оказывается равным нулю. Отметим, что модуль вектора в прямоугольной системе координат определяется как квадратный корень от суммы квадратов компонент этого вектора.

Под векторным произведением понимают такое умножение вектора на вектор, результатом которого также является вектор. Его направление оказывается перпендикулярно каждому из умножаемых параметров, а длина равна произведению модулей векторов на синус угла между ними, то есть A → x B → = |A → |*|B → |*sin(θ AB), где значок "x" обозначает векторное произведение. В матричном виде этот вид произведения представляется как определитель, строками которого являются элементарные вектора данной системы координат и компоненты каждого вектора.

Как скалярное, так и векторное произведения используют в математике и физике для определения многих величин, например, площади и объема фигур.

Скорость и ускорение

Под скоростью в физике понимают быстроту изменения местоположения данной материальной точки. Измеряется скорость в системе СИ в метрах в секунду (м/с), а обозначается символом v → . Под ускорением понимают быстроту изменения скорости. Ускорение измеряется в метрах в квадратную секунду (м/с 2), а обозначается обычно символом a → . Значение 1 м/с 2 говорит о том, что за каждую секунду тело увеличивает свою скорость на 1 м/с.

Скорость и ускорение - это векторные величины, которые участвуют в формулах второго закона Ньютона и перемещения тела как материальной точки. Скорость всегда направлена вдоль направления движения, ускорение же может быть направлено произвольным образом относительно движущегося тела.

Физическая величина сила

Сила - векторная физическая величина, которая отражает интенсивность взаимодействия между телами. Обозначается она символом F → , измеряется в ньютонах (Н). По определению, 1 Н - это сила, способная за каждую секунду времени изменять скорость тела, имеющего массу 1 кг, на 1 м/с.

Эта физическая величина широко применяется в физике, поскольку с ней связаны энергетические характеристики процессов взаимодействия. Природа силы может быть самой разной, например, гравитационные силы планет, сила, которая заставляет двигаться автомобиль, упругие силы твердых сред, электрические силы, описывающие поведение электрических зарядов, магнитные, ядерные силы, которые обуславливают стабильность атомных ядер, и так далее.

Векторная величина давление

С понятием силы тесно связана другая величина - давление. Под ним в физике понимают нормальную проекцию силы на площадку, на которую она действует. Поскольку сила является вектором, то, согласно правилу умножения числа на вектор, давление также будет векторной величиной: P → = F → /S, где S - площадь. Давление измеряется в паскалях (Па), 1 Па - это параметр, при котором перпендикулярная сила в 1 Н действует на поверхность площадью 1 м 2 . Исходя из определения, вектор давления направлен в том же направлении, что и вектор силы.

В физике понятие давления часто используется при изучении явлений в жидкостях и газах (например, закон Паскаля или уравнение состояния идеального газа). Давление тесно связано с температурой тела, поскольку кинетическая энергия атомов и молекул, представлением которой является температура, объясняет природу существования самого давления.

Напряженность электрического поля

Вокруг любого заряженного тела существует электрическое поле, силовой характеристикой которого является его напряженность. Определяется эта напряженность как сила, действующая в данной точке электрического поля на единичный заряд, помещенный в эту точку. Обозначается напряженность электрического поля буквой E → и измеряется в ньютонах на кулон (Н/Кл). Вектор напряженности направлен вдоль силовой линии электрического поля в ее направлении, если заряд положительный, и против нее, если заряд отрицательный.

Напряженность электрического поля, создаваемого точечным зарядом, можно определить в любой точке, используя закон Кулона.

Магнитная индукция

Магнитное поле, как показали в XIX веке ученые Максвелл и Фарадей, тесно связано с электрическим полем. Так, изменяющееся электрическое поле порождает магнитное, и наоборот. Поэтому оба вида полей описываются в рамках электромагнитных физических явлений.

Магнитная индукция описывает силовые свойства магнитного поля. Магнитная индукция - величина скалярная или векторная? Понять это можно, зная, что она определяется через силу F → , действующую на заряд q, который пролетает со скоростью v → в магнитном поле, согласно следующей формуле: F → = q*|v → x B → |, где B → - магнитная индукция. Таким образом, отвечая на вопрос, величина скалярная или векторная - магнитная индукция, можно сказать, что это вектор, который направлен от северного магнитного полюса к южному. Измеряется B → в теслах (Тл).

Физическая величина кандела

Еще одним примером векторной величины является кандела, которая вводится в физику через световой поток, измеряемый в люменах, проходящий через поверхность, ограниченную углом в 1 стерадиан. Кандела отражает яркость света, поскольку показывает плотность светового потока.

Пугающие школьника два слова - вектор и скаляр - на самом деле не являются страшными. Если подойти к теме с интересом, то все можно понять. В данной статье рассмотрим, какая величина является векторной, а какая скалярной. Точнее, приведем примеры. Каждый ученик, наверное, обращал внимание, что в физике некоторые величины обозначаются не только символом, но и стрелкой сверху. Что они обозначают? Об этом будет сказано ниже. Постараемся разобраться, чем отличается от скалярной.

Примеры векторов. Как они обозначаются

Что подразумевается под вектором? То, что характеризует движение. Не важно, в пространстве или на плоскости. Какая величина является векторной вообще? Например, летит самолет с определенной скоростью на какой-то высоте, имеет конкретную массу, начал движение из аэропорта с нужным ускорением. Что относится к движению самолета? Что заставило его лететь? Конечно, ускорение, скорость. Векторные величины из курса физики являются наглядными примерами. Говоря прямо, векторная величина связана с движением, перемещением.

Вода тоже движется с определенной скоростью с высоты горы. Видите? Движение осуществляется за счет не объема или массы, а именно скорости. Теннисист дает возможность мячику двигаться при помощи ракетки. Он задает ускорение. К слову сказать, приложенная в данном случае сила также является векторной величиной. Потому что она получается вследствие заданных скоростей и ускорений. Сила способна также меняться, осуществлять конкретные действия. Ветер, который колышет листья на деревьях, тоже можно считать примером. Так как имеется скорость.

Положительные и отрицательные величины

Векторной величиной называется величина, которая имеет направление в окружающем пространстве и модуль. Снова появилось пугающее слово, на этот раз модуль. Представьте, что нужно решить задачку, где будет фиксироваться отрицательное значение ускорения. В природе отрицательных значений, казалось бы, не существует. Как скорость может быть отрицательной?

У вектора есть такое понятие. Это касается, например, сил, которые приложены к телу, но имеют разные направления. Вспомните третий где действие равно противодействию. Ребята перетягивают канат. Одна команда в синих футболках, вторая - в желтых. Вторые оказываются сильнее. Допустим, что вектор их силы направлен положительно. В то же время у первых не получается натянуть канат, но пытаются. Возникает противодействующая сила.

Векторная или скалярная величина?

Поговорим о том, чем отличается векторная величина от скалярной. Какой параметр не имеет никакого направления, но имеет свое значение? Перечислим некоторые скалярные величины ниже:


Имеют ли все они направление? Нет. Какая величина является векторной, а какая скалярной, можно показать только наглядными примерами. В физике есть такие понятия не только в разделе "Механика, динамика и кинематика", а так же в параграфе "Электричество и магнетизм". Сила Лоренца, - все это так же векторные величины.

Вектор и скаляр в формулах

В учебниках по физике часто встречаются формулы, в которых есть стрелочка сверху. Вспомните второй закон Ньютона. Сила ("F" со стрелочкой сверху) равна произведению массы ("m") и ускорения ("a" со стрелочкой сверху). Как говорилось выше, сила и ускорение являются величинами векторными, а вот масса - скалярной.

К сожалению, не во всех изданиях есть обозначение этих величин. Наверное, сделано это для упрощения, чтобы школьников не вводить в заблуждение. Лучше всего покупать те книги и справочники, в которых обозначены векторы в формулах.

То, какая величина является векторной, покажет иллюстрация. Рекомендуется обращать внимание на картинки и схемы на уроках физики. Векторные величины имеют направление. Куда направлена Конечно же, вниз. Значит, стрелочка будет показана в том же направлении.

В технических вузах изучают физику углубленно. В рамках многих дисциплин преподаватели рассказывают о том, какие величины являются скалярными и векторными. Такие знания требуются в сферах: строительство, транспорт, естественные науки.

Векторная величина (вектор) – это физическая величина, которая имеет две характеристики – модуль и направление в пространстве.

Примеры векторных величин: скорость (), сила (), ускорение () и т.д.

Геометрически вектор изображается как направленный отрезок прямой линии, длина которого в масштабе – модуль вектора.

Ра́диус-ве́ктор (обычно обозначается или просто ) - вектор, задающий положения точки в пространстве относительно некоторой заранее фиксированной точки, называемой началом координат.

Для произвольной точки в пространстве, радиус-вектор - это вектор, идущий из начала координат в эту точку.

Длина радиус-вектора, или его модуль, определяет расстояние, на котором точка находится от начала координат, а стрелка указывает направление на эту точку пространства.

На плоскости углом радиус-вектора называется угол, на который радиус-вектор повёрнут относительно оси абсцисс в направлении против часовой стрелки.

линия, вдоль которой движется тело, называется траекторией движения. В зависимости от формы траектории все движения можно разделить на прямолинейные и криволинейные.

Описание движения начинается с ответа на вопрос: как изменилось положение тела в пространстве за некоторый промежуток времени? Как же определяют изменение положения тела в пространстве?

Перемещение - направленный отрезок (вектор), соединяющий начальное и конечное положение тела.

Ско́рость (часто обозначается , от англ. velocity или фр. vitesse ) - векторная физическая величина, характеризующая быстроту перемещения и направление движения материальной точки в пространстве относительно выбранной системы отсчёта (например угловая скорость). Этим же словом может называться скалярная величина, точнее модуль производной радиус-вектора.

В науке используется также скорость в широком смысле, как быстрота изменения какой-либо величины (не обязательно радиус-вектора) в зависимости от другой (чаще изменения во времени, но также в пространстве или любой другой). Так, например, говорят о скорости изменения температуры, скорости химической реакции, групповой скорости, скорости соединения, угловой скорости и т. д. Математически характеризуется производной функции.

Ускоре́ние (обычно обозначается , в теоретической механике ), производная скорости по времени - векторная величина, показывающая, насколько изменяется вектор скорости точки (тела) при её движении за единицу времени (т.е. ускорение учитывает не только изменение величины скорости, но и её направления).

Например, вблизи Земли падающее на Землю тело, в случае, когда можно пренебречь сопротивлением воздуха, увеличивает свою скорость примерно на 9,8 м/с каждую секунду, то есть, его ускорение равно 9,8 м/с².

Раздел механики, изучающий движение в трёхмерном евклидовом пространстве, его запись, а также запись скоростей и ускорений в различных системах отсчёта, называется кинематикой.

Единицей ускорения служит метр в секунду за секунду (m/s 2 , м/с 2 ), существует также внесистемная единица Гал (Gal), применяемая в гравиметрии и равная 1 см/с 2 .

Производная ускорения по времени т.е. величина, характеризующая быстроту изменения ускорения по времени называется рывок.

Наиболее простое движение тела - такое, при котором все точки тела движутся одинаково, описывая одинаковые траектории. Такое движение называется поступательным . Мы получим этот тип движения, двигая лучинку так, чтобы она все время оставалась параллельной самой себе. При поступательном движении траектории могут быть как прямыми (рис. 7, а), так и кривыми (рис. 7, б) линиями.
Можно доказать, что при поступательном движении любая прямая, проведенная в теле, остается параллельной самой себе. Этим характерным признаком удобно пользоваться, чтобы ответить на вопрос, является ли данное движение тела поступательным. Например, при качении цилиндра по плоскости прямые, пересекающие ось, не остаются параллельными самим себе: качение - это не поступательное движение. При движении рейсшины и угольника по чертежной доске любая прямая, проведенная в них, остается параллельной самой себе, значит, они движутся поступательно (рис. 8). Поступательно движется игла швейной машины, поршень в цилиндре паровой машины или двигателя внутреннего сгорания, кузов автомашины (но не колеса!) при езде по прямой дороге и т. д.

Другой простой тип движения - это вращательное движение тела, или вращение. При вращательном движении все точки тела движутся по окружностям, центры которых лежат на прямой. Эту прямую называют осью вращения (прямая 00" на рис.9). Окружности лежат в парал-лельных плоскостях, перпендикулярных к оси вращения. Точки тела, лежащие на оси вращения, остаются неподвижными. Вращение не является поступательным движением: при вращении оси OO". Показаны траектории остаются параллельными только прямые, параллельные оси вращения.

Абсолю́тно твёрдое те́ло - второй опорный объект механики наряду с материальной точкой.

Существует несколько определений:

1. Абсолютно твердое тело - модельное понятие классической механики, обозначающее совокупность материальных точек, расстояния между которыми сохраняются в процессе любых движений, совершаемых этим телом. Иначе говоря, абсолютно твердое тело не только не изменяет свою форму, но и сохраняет неизменным распределение массы внутри.

2. Абсолютно твердое тело - механическая система, обладающая только поступательными и вращательными степенями свободы. «Твёрдость» означает, что тело не может быть деформировано, то есть телу нельзя передать никакой другой энергии, кроме кинетической энергии поступательного или вращательного движения.

3. Абсолютно твёрдое тело - тело (система), взаимное положение любых точек которого не изменяется, в каких бы процессах оно ни участвовало.

В трёхмерном пространстве и в случае отсутствия связей абсолютно твёрдое тело обладает 6 степенями свободы: три поступательных и три вращательных. Исключение составляет двухатомная молекула или, на языке классической механики, твёрдый стержень нулевой толщины. Такая система имеет только две вращательных степени свободы.

Конец работы -

Эта тема принадлежит разделу:

Недоказанная и неопровергнутая гипотеза называется открытой проблемой

Физика тесно связана с математикой математика предоставляет аппарат с помощью которого физические законы могут быть точно сформулированы.. тео рия греч рассмотрение.. стандартный метод проверки теорий прямая экспериментальная проверка эксперимент критерий истины однако часто..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Принцип относительности в механике
Инерциальные системы отсчета и принцип относительности. Преобразования Галилея. Инварианты преобразования. Абсолютные и относительные скорости и ускорения. Постулаты специальной т

Вращательное движение материальной точки.
Вращательное движение материальной точки - движение материальной точки по окружности. Враща́тельное движе́ние - вид механического движения. При

Связь между векторами линейной и угловой скоростей, линейного и углового ускорений.
Мера вращательного движения: угол φ, на который поверн.тся радиус-вектор точки в плоскости, нормальной к оси вращения. Равномерное вращательное движен

Скорость и ускорение при криволинейном движении.
Криволинейное движение более сложный вид движения, чем прямолинейное, поскольку даже если движение происходит на плоскости, то изменяются две координаты, характеризующие положение тела. Скорость и

Ускорение при криволинейном движении.
Рассматривая криволинейное движение тела, мы видим, что его скорость в разные моменты различна. Даже в том случае, когда величина скорости не меняется, все же имеет место изменение направления скор

Уравнение движения Ньютона
(1) где сила F в общем случа

Центр масс
центр инерции, геометрическая точка, положение которой характеризует распределение масс в теле или механической системе. Координаты Ц. м. определяются формулами

Закон движения центра масс.
Воспользовавшись законом изменения импульса, получим закон движения центра масс: dP/dt = M∙dVc/dt = ΣFi Центр масс системы движется так же, как дв

Галилея принцип относительности
· Инерциальная система отсчёта Инерциальная система отсчёта Галилея

Пластическая деформация
Согнем немного стальную пластинку (например, ножовку), а затем через некоторое время отпустим ее. Мы увидим, что ножовка полностью (во всяком случае на взгляд) восстановит свою форму. Если возьмем

ВНЕШНИЕ И ВНУТРЕННИЕ СИЛЫ
. В механике внешними силами по отношению к данной системе материальных точек (т. е. такой совокупности материальных точек, в которой движение каждой точки зависит от положений или движений всех ос

Кинетическая энергия
энергия механической системы, зависящая от скоростей движения её точек. К. э. Т материальной точки измеряется половиной произведения массы m этой точки на квадрат её скорости

Кинетическая энергия.
Кинетическая энергия - энергия движущегося тела.(От греческого слова kinema - движение). По определению кинетическая энергия покоящегося в данной системе отсчета

Величина, равная половине произведения массы тела на квадрат его скорости.
=Дж. Кинетическая энергия - величина относительная, зависящая от выбора СО, т.к. скорость тела зависит от выбора СО. Т.о.

Момент силы
· Момент силы. Рис. Момент силы. Рис. Момент силы, величин

Кинетическая энергия вращающегося тела
Кинетическая энергия – величина аддитивная. Поэтому кинетическая энергия тела, движущегося произвольным образом, равна сумме кинетических энергий всех n материаль

Работа и мощность при вращении твердого тела.
Работа и мощность при вращении твердого тела. Найдем выражение для работы при вра

Основное уравнение динамики вращательного движения
Согласно уравнению (5.8) второй закон Ньютона для вращательного движения П