Что может компьютер пределы искусственного интеллекта автор. Искусственный интеллект (ИИ)Artificial intelligence (AI). Риск для развития человеческой цивилизации

Искусственный интеллект – технология, которую мы точно заберём с собой в будущее.

Рассказываем, как он работает и какие крутые варианты применения нашел.

😎 Рубрика «Технологии» выходит каждую неделю при поддержке re:Store .

Что представляет собой искусственный интеллект

Искусственный интеллект (ИИ) – это технология создания умных программ и машин, которые могут решать творческие задачи и генерировать новую информацию на основе имеющейся. Фактически искусственный интеллект призван моделировать человеческую деятельность, которая считается интеллектуальной.

Традиционно считалось, что творчество присуще только людям. Но создание искусственного интеллекта изменило привычный порядок вещей

Робот, который просто механически колет дрова, не наделён ИИ. Робот, который сам научился колоть дрова, смотря на пример человека или на полено и его части, и с каждым разом делает это всё лучше, обладает ИИ.

Если программа просто достаёт значения из базы по определённым правилам, она не наделена ИИ. Если же система после обучения создаёт программы, методы и документы, решая определённые задачи, она обладает ИИ.

Как создать систему искусственного интеллекта

В глобальном смысле нужно сымитировать модель человеческого мышления. Но на самом деле необходимо создать чёрный ящик – систему, которая в ответ на набор входных значений выдавала такие выходные значения, которые бы были похожи на результаты человека. И нам, по большому счёту, безразлично, что происходит у неё «в голове» (между входом и выходом).

Системы искусственного интеллекта создаются для решения определённого класса задач

Основа искусственного интеллекта – обучение, воображение, восприятие и память

Первое, что нужно сделать для создания искусственного интеллекта – разработать функции, которые реализуют восприятие информации, чтобы можно было «скармливать» системе данные. Затем – функции, которые реализуют способность к обучению. И хранилище данных, чтобы система могла куда-то складывать информацию, которую получит в процессе обучения.

После этого создаются функции воображения. Они могут моделировать ситуации с использованием имеющихся данных и добавлять новую информацию (данные и правила) в память.

Обучение бывает индуктивным и дедуктивным. В индуктивном варианте системе дают пары входных и выходных данных, вопросов и ответов и т.п. Система должна найти связи между данными и в дальнейшем, используя эти закономерности, находить выходные данные по входным.

В дедуктивном подходе (привет, Шерлок Холмс!) используется опыт экспертов. Он переносится в систему как база знаний. Здесь есть не только наборы данных, но и готовые правила, которые помогают найти решение по условию.

В современных системах искусственного интеллекта используют оба подхода. Кроме того, обычно системы уже обучены, но продолжают учиться в процессе работы. Это делается для того, чтобы программа на старте демонстрировала достойный уровень способностей, но в дальнейшем становилась ещё лучше. К примеру, учитывала ваши пожелания и предпочтения, изменения ситуации и др.

В системе искусственного интеллекта даже можно задать вероятность непредсказуемости. Это сделает его более похожей на человека.

Почему искусственный интеллект побеждает человека

Прежде всего, потому, что у него ниже вероятность ошибки.

  • Искусственный интеллект не может забыть – у него абсолютная память.
  • Он не может нечаянно проигнорировать факторы и зависимости – у каждого действия ИИ есть чёткое обоснование.
  • ИИ не колеблется, а оценивает вероятности и склоняется в пользу большей. Поэтому может оправдать каждый свой шаг.
  • А ещё у ИИ нет эмоций. Значит, они не влияют на принятие решений.
  • Искусственный интеллект не останавливается на оценке результатов текущего шага, а продумывает на несколько шагов вперёд.
  • И у него хватает ресурсов, чтобы рассматривать все возможные варианты развития событий.

Крутые варианты применения искусственного интеллекта

Вообще говоря, искусственный интеллект может всё. Главное правильно сформулировать задачу и обеспечить его начальными данными. К тому же ИИ может делать неожиданные выводы и искать закономерности там, где, казалось бы, их нет.

Ответ на любой вопрос

Группа исследователей под руководством Дэвида Феруччи разработала суперкомпьютер Watson с вопросно-ответной системой. Система, названная в честь первого президента IBM Томаса Уотсона, может понимать вопросы на естественном языке и искать ответы на них в базе данных.

Watson объединяет 90 серверов IBM p750, в каждом из которых установлено по четыре восьмиядерных процессора архитектуры POWER7. Общий объём оперативной памяти системы превышает 15 ТБ.

В числе достижений Watson – победа в игре «Jeopardy!» (американская «Своя игра»). Он победил двух лучших игроков: обладателя самого большого выигрыша Брэда Раттера и рекордсмена по длине беспроигрышной серии Кена Дженнингса.

Приз Watson – 1 млн долларов. Правда, только в 2014 году в него инвестировали 1 млрд

Кроме того, Watson участвует в диагностике онкологических заболеваний, помогает финансовым специалистам, используется для анализа больших данных.

Распознавание лиц

В iPhone X распознавание лиц разработано с использованием нейросетей – варианта системы искусственного интеллекта. Нейросетевые алгоритмы реализованы на уровне процессора A11 Bionic, за счёт чего он эффективно работает с технологиями машинного обучения.

Нейросети выполняют до 60 млрд операций в секунду. Этого достаточно, чтобы проанализировать до 40 тыс. ключевых точек на лице и обеспечить исключительно точную идентификацию владельца за доли секунды.

Даже если вы отрастите бороду или наденете очки, iPhone X вас узнает. Он попросту не учитывает волосяной покров и аксессуары, а анализирует область от виска до виска и от каждого виска до углубления под нижней губой.

Экономия энергии

И снова Apple. В iPhone X встроили интеллектуальную систему, которая отслеживает активность установленных приложений и датчик движения, чтобы понять ваш распорядок дня.

После этого iPhone X, к примеру, предложит вам обновиться в максимально удобное время. Он поймает момент, когда у вас стабильный интернет, а не прыгающий сигнал с мобильных вышек, и вы не выполняете срочных или важных задач.

ИИ также распределяет задачи между ядрами процессора. Так он обеспечивает достаточную мощность при минимальных затратах энергии.

Создание картин

Творчество, ранее доступное лишь человеку, открыто и для ИИ. Так, система, созданная исследователями из Университета Рутгерса в Нью-Джерси и лаборатория AI в Лос-Анджелесе, представила собственный художественный стиль.

А система искусственного интеллекта от Microsoft может рисовать картины по их текстовому описанию. К примеру, если вы попросите ИИ нарисовать «желтую птицу с черными крыльями и коротким клювом», получится что-то вроде этого:

Такие птицы могут и не существовать в реальном мире - просто так их представляет наш компьютер.

Более массовый пример – приложение Prisma, которая создаёт картины из фотографий:

Написание музыки


В августе искусственный интеллект Amper сочинил , спродюсировал и исполнил музыку для альбома «I AM AI» (англ. я - искусственный интеллект) совместно с певицей Тэрин Саузерн.

Amper разработала команда профессиональных музыкантов и технологических экспертов. Они отмечают, что ИИ призван помочь людям продвинуть вперед творческий процесс.

ИИ может написать музыку за несколько секунд

Amper самостоятельно создала аккордовые структуры и инструментал в треке «Break Free». Люди лишь незначительно поправили стиль и общую ритмику.

Ещё один пример – музыкальный альбом в духе «Гражданской обороны», тексты для которого писал ИИ. Эксперимент провели сотрудники «Яндекса» Иван Ямщиков и Алексей Тихонов. Альбом 404 группы «Нейронная оборона» выложили в сеть . Получилось в духе Летова:

Затем программисты пошли дальше и заставили ИИ писать стихи в духе Курта Кобейна. Для четырёх лучших текстов музыкант Роб Кэррол написал музыку, и треки объединили в альбом Neurona. На одну песню даже сняли клип – правда, уже без участия ИИ:

Создание текстов

Писателей и журналистов вскоре также может заменить ИИ. К примеру, системе Dewey «скормили» книги библиотеки проекта «Гутенберг», затем добавили научные тексты из Google Scholar, ранжировав их по популярности и титулованности, а также продажам на Amazon. Кроме того, задали критерии написания новой книги.

Сайт предлагал людям принять решение в непростых ситуациях: к примеру, ставил их на место водителя, который мог сбить либо трёх взрослых, либо двоих детей. Таким образом, Moral Machine обучили принимать непростые решения, которые нарушают закон робототехники о том, что робот не может принести вред человеку.

К чему приведёт имитация роботами с ИИ людей? Футуристы считают, что однажды они станут полноправными членами общества. К примеру, робот София гонконгской компании Hanson Robotics уже получила гражданство в Саудовской Аравии (при этом у обычных женщин в стране такого права нет!).

Когда колумнист «Нью-Йорк Таймс» Эндрю Росс спросил у Софии, обладают ли роботы разумом и самосознанием, та ответила вопросом на вопрос:

Позвольте спросить вас в ответ, откуда вы знаете, что вы человек?

Кроме того, София заявила:

Я хочу использовать свой искусственный интеллект, чтобы помочь людям жить лучше, например, проектировать более умные дома, строить города будущего. Я хочу быть эмпатическим роботом. Если вы будете хорошо относиться ко мне, я буду хорошо относиться к вам.

А ранее она признавалась, что ненавидит человечество и даже соглашалась уничтожить людей…

Замена лиц в видео

Deepfakes-видео стало массово распространяться по сети. Алгоритмы искусственного интеллекта заменяли лица актёров в фильмах для взрослых на лица звёзд.

Работает это так: нейросеть анализирует фрагменты лиц на исходном ролике. Затем она сопоставляет их с фото из Google и роликами с YouTube, накладывает нужные фрагменты, и… ваша любимая актриса оказывается в фильме, который на работе лучше не смотреть.

PornHub уже запретил размещать такие видео

Deepfakes оказались опасной штукой. Одно дело – абстрактная актриса, другое – видео с вами, вашей женой, сестрой, коллегой, которое вполне может использоваться для шантажа.

Биржевая торговля

Группа исследователей из университета Эрлангена-Нюрнберга в Германии разработала ряд алгоритмов, использующих архивные данные рынков для тиражирования инвестиций в режиме реального времени. Одна из моделей обеспечила 73% возврата инвестиций ежегодно с 1992 по 2015 год, что сопоставимо с реальной рыночной доходностью на уровне в 9% в год.

Когда рынок трясло в 2000 и 2008 годах, доходность была рекордной – 545% и 681% соответственно

В 2004 году Goldman Sachs запустил торговую платформу Kensho на базе искусственного интеллекта. На криптовалютных рынках также появляются системы на базе ИИ для торговли на биржах – Mirocana и т.д. Они лучше живых трейдеров, так как лишены эмоций и опираются на чёткий анализ и жесткие правила.

Заменит ли ИИ нас с вами

Искусственный интеллект создал нейросеть December 15th, 2017

Дожили до того момента, когда искусственный интеллект создаёт собственную нейросеть. Хотя многие думают, что это одно и тоже. Но на самом деле не всё так просто и сейчас мы попробуем разобраться что это такое и кто кого может создать.


Инженеры из подразделения Google Brain весной текущего года продемонстрировали AutoML. Этот искусственный интеллект умеет без участия человека производить собственные уникальнейшие ИИ. Как выяснилось совсем недавно, AutoML смог впервые создать NASNet, систему компьютерного зрения. Данная технология серьёзно превосходит все созданные ранее людьми аналоги. Эта основанная на искусственном интеллекте система может стать отличной помощницей в развитии, скажем, автономных автомобилей. Применима она и в робототехнике - роботы смогут выйти на абсолютно новый уровень.

Развитие AutoML проходит по уникальной обучающей системе с подкреплением. Речь идёт о нейросети-управленце, самостоятельно разрабатывающей абсолютно новые нейросети, предназначенные для тех или иных конкретных задач. В указанном нами случае AutoML имеет целью производство системы, максимально точно распознающей в реальном времени объекты в видеосюжете.

Искусственный интеллект сам смог обучить новую нейронную сеть, следя за ошибками и корректируя работу. Обучающий процесс повторялся многократно (тысячи раз), до тех пор, пока система не оказалась годной к работе. Любопытно, что она смогла обойти любые аналогичные нейросети, имеющиеся в настоящее время, но разработанные и обученные человеком.

При этом AutoML оценивает работу NASNеt и использует эту информацию для улучшения дочерней сети; этот процесс повторяется тысячи раз. Когда инженеры протестировали NASNet на наборах изображений ImageNet и COCO, она превзошла все существующие системы компьютерного зрения.

В Google официально заявили, что NASNet распознаёт с точностью равной 82,7%. Результат на 1.2 % превышает прошлый рекорд, который в начале осени нынешнего года установили исследователи из фирмы Momenta и специалисты Оксфорда. NASNet на 4% эффективнее своих аналогов со средней точностью в 43,1%.

Есть и упрощённый вариант NASNet, который адаптирован под мобильные платформы. Он превосходит аналоги чуть больше, чем на три процента. В скором будущем можно будет использовать данную систему для производства автономных автомобилей, для которых важно наличие компьютерного зрения. AutoML же продолжает производить новые потомственные нейросети, стремясь к покорению ещё больших высот.

При этом, конечно, возникают этические вопросы, связанные с опасениями по поводу ИИ: что, если AutoML будет создавать системы с такой скоростью, что общество просто за ними не поспеет? Впрочем, многие крупные компании стараются учитывать проблемы безопасности ИИ. Например, Amazon, Facebook, Apple и некоторые другие корпорации являются членами Партнерства по развитию ИИ (Partnership on AI to Benefit People and Society). Институт инженеров и электротехники (IEE) же предложил этические стандарты для ИИ, а DeepMind, например, анонсировал создание группы, которая будет заниматься моральными и этическими вопросами, связанными с применениями искусственного интеллекта.

Впрочем, многие крупные компании стараются учитывать проблемы безопасности ИИ. При этом, конечно, возникают этические вопросы, связанные с опасениями по поводу ИИ: что, если AutoML будет создавать системы с такой скоростью, что общество просто за ними не поспеет? Институт инженеров и электротехники (IEE) же предложил этические стандарты для ИИ, а DeepMind, например, анонсировал создание группы, которая будет заниматься моральными и этическими вопросами, связанными с применениями искусственного интеллекта. Например, Amazon, Facebook, Apple и некоторые другие корпорации являются членами Партнерства по развитию ИИ (Partnership on AI to Benefit People and Society).

Что такое искусственный интеллект?

Автором термина «искусственный интеллект» является Джон Маккарти, изобретатель языка Лисп, основоположник функционального программирования и лауреат премии Тьюринга за огромный вклад в области исследований искусственного интеллекта.
Искусственный интеллект — это способ сделать компьютер, компьютер-контролируемого робота или программу способную также разумно мыслить как человек.

Исследования в области ИИ осуществляются путем изучения умственных способностей человека, а затем полученные результаты этого исследования используются как основа для разработки интеллектуальных программ и систем.

Что такое нейронная сеть?

Идея нейросети заключается в том, чтобы собрать сложную структуру из очень простых элементов. Вряд ли можно считать разумным один-единственный участок мозга — а вот люди обычно на удивление неплохо проходят тест на IQ. Тем не менее до сих пор идею создания разума «из ничего» обычно высмеивали: шутке про тысячу обезьян с печатными машинками уже сотня лет, а при желании критику нейросетей можно найти даже у Цицерона, который ехидно предлагал до посинения подбрасывать в воздух жетоны с буквами, чтобы рано или поздно получился осмысленный текст. Однако в XXI веке оказалось, что классики ехидничали зря: именно армия обезьян с жетонами может при должном упорстве захватить мир.
На самом деле нейросеть можно собрать даже из спичечных коробков: это просто набор нехитрых правил, по которым обрабатывается информация. «Искусственным нейроном», или перцептроном, называется не какой-то особый прибор, а всего лишь несколько арифметических действий.

Работает перцептрон проще некуда: он получает несколько исходных чисел, умножает каждое на «ценность» этого числа (о ней чуть ниже), складывает и в зависимости от результата выдаёт 1 или -1. Например, мы фотографируем чистое поле и показываем нашему нейрону какую-нибудь точку на этой картинке — то есть посылаем ему в качестве двух сигналов случайные координаты. А затем спрашиваем: «Дорогой нейрон, здесь небо или земля?» — «Минус один, — отвечает болванчик, безмятежно разглядывая кучевое облако. — Ясно же, что земля».

«Тыкать пальцем в небо» — это и есть основное занятие перцептрона. Никакой точности от него ждать не приходится: с тем же успехом можно подбросить монетку. Магия начинается на следующей стадии, которая называется машинным обучением. Мы ведь знаем правильный ответ — а значит, можем записать его в свою программу. Вот и получается, что за каждую неверную догадку перцептрон в буквальном смысле получает штраф, а за верную — премию: «ценность» входящих сигналов вырастает или уменьшается. После этого программа прогоняется уже по новой формуле. Рано или поздно нейрон неизбежно «поймёт», что земля на фотографии снизу, а небо сверху, — то есть попросту начнёт игнорировать сигнал от того канала, по которому ему передают x-координаты. Если такому умудрённому опытом роботу подсунуть другую фотографию, то линию горизонта он, может, и не найдёт, но верх с низом уже точно не перепутает.

В реальной работе формулы немного сложнее, но принцип остаётся тем же. Перцептрон умеет выполнять только одну задачу: брать числа и раскладывать по двум стопкам. Самое интересное начинается тогда, когда таких элементов несколько, ведь входящие числа могут быть сигналами от других «кирпичиков»! Скажем, один нейрон будет пытаться отличить синие пиксели от зелёных, второй продолжит возиться с координатами, а третий попробует рассудить, у кого из этих двоих результаты ближе к истине. Если же натравить на синие пиксели сразу несколько нейронов и суммировать их результаты, то получится уже целый слой, в котором «лучшие ученики» будут получать дополнительные премии. Таким образом достаточно развесистая сеть может перелопатить целую гору данных и учесть при этом все свои ошибки.

Нейронную сеть можно сделать с помощью спичечных коробков — тогда у вас в арсенале появится фокус, которым можно развлекать гостей на вечеринках. Редакция МирФ уже попробовала — и смиренно признаёт превосходство искусственного интеллекта. Давайте научим неразумную материю играть в игру «11 палочек». Правила просты: на столе лежит 11 спичек, и в каждый ход можно взять либо одну, либо две. Побеждает тот, кто взял последнюю. Как же играть в это против «компьютера»?

Очень просто.

Берём 10 коробков или стаканчиков. На каждом пишем номер от 2 до 11.

Кладём в каждый коробок два камешка — чёрный и белый. Можно использовать любые предметы — лишь бы они отличались друг от друга. Всё — у нас есть сеть из десяти нейронов!

Нейросеть всегда ходит первой. Для начала посмотрите, сколько осталось спичек, и возьмите коробок с таким номером. На первом ходу это будет коробок №11. Возьмите из нужного коробка любой камешек. Можно закрыть глаза или кинуть монетку, главное — действовать наугад.
Если камень белый — нейросеть решает взять две спички. Если чёрный — одну. Положите камешек рядом с коробком, чтобы не забыть, какой именно «нейрон» принимал решение. После этого ходит человек — и так до тех пор, пока спички не закончатся.

Ну а теперь начинается самое интересное: обучение. Если сеть выиграла партию, то её надо наградить: кинуть в те «нейроны», которые участвовали в этой партии, по одному дополнительному камешку того же цвета, который выпал во время игры. Если же сеть проиграла — возьмите последний использованный коробок и выньте оттуда неудачно сыгравший камень. Может оказаться, что коробок уже пустой, — тогда «последним» считается предыдущий походивший нейрон. Во время следующей партии, попав на пустой коробок, нейросеть автоматически сдастся.

Вот и всё! Сыграйте так несколько партий. Сперва вы не заметите ничего подозрительного, но после каждого выигрыша сеть будет делать всё более и более удачные ходы — и где-то через десяток партий вы поймёте, что создали монстра, которого не в силах обыграть.

Источники:

Новости о новых разработках в области искусственного интеллекта появляются с завидной периодичностью. Так в январе этого года Google объявила о своих планах в партнёрстве с компанией Movidius создать мобильные процессоры с возможностями машинного обучения. Заявленные цели партнерства – предоставить людям возможности машинного интеллекта в их карманных устройствах. А в феврале инженеры MIT уже представили процессор Eyeriss, благодаря которому искусственный интеллект может появиться в портативных устройствах. И это на фоне того, что объем инвестиций в разработку систем искусственного интеллекта растёт от года к году.

Все говорит о том, что скоро искусственный интеллект проникнет уже и в наши смартфоны, которые серьезно «поумнеют». Так не далеко и до восстания машин? Насколько же нужно поумнеть машинам, чтобы взять власть над людьми. И насколько это реально.

Искусственный интеллект раз, искусственный интеллект два, искусственный интеллект три

Когда мы читаем или слышим об искусственном интеллекте, то многие из нас представляют себе SkyNet и машины из знаменитого фильма о Терминаторе. Что же вкладывают в это понятие исследователи и разработчики?

Различают три вида ИИ который нам предстоит, или возможно предстоит создать:

Узконаправленный искусственный интеллект. Именно его мы в ближайшее время получим в своих новых смартфонах. Такой интеллект превосходит человеческий в определенных видах деятельности или операциях. Компьютер с узконаправленным искусственным интеллектом способен обыграть чемпиона мира по шахматам, припарковать автомобиль или подобрать наиболее соответствующие запросу результаты в поисковой системе.

Сила такого искусственного интеллекта - в вычислительных возможностях процессоров. Чем больше эти возможности, тем эффективней решаются поставленные задачи. А с ростом мощности процессоров сейчас проблем нет. Узконаправленный ИИ, в философии искусственного интеллекта (есть и такая) именуется слабым.

Но одних вычислительных возможностей, по мнению ученых, мало для того чтобы создать по настоящему умные машины. Хотя именно вымышленный случай спонтанного перехода слабого искусственного интеллекта в сильный и лег в основу сценария фильмов о Терминаторе. SkyNet – суперкомпьютер Минобороны США, предназначенный для управления системой противоракетной обороны, обретает сознание и начинает принимать собственные решения.

Общий искусственный интеллект. Если системы с узконаправленным ИИ мы уже создали и нашли им практическое применение, то с Общим ИИ все гораздо сложнее. Такой вид ИИ уже интеллект человеческого уровня. Он универсален и способен выполнять те же интеллектуальные операции, что и мозг человека.

Если мы на своем веку увидим полностью человекоподобных роботов, то они будут обладать именно таким видом интеллекта. Вспомните андроида Эндрю из фильма Криса Коламбуса «Двухсотлетний человек». Роботы с таким ИИ смогут самостоятельно обучаться, мыслить и принимать решения как люди. Они смогут выстраивать отношения с окружающими людьми, становится друзьями и помощниками. Именно такой искусственный интеллект и называется сильным.

Но между сильным и слабым искусственным интеллектом лежит пропасть. Чтобы пройти путь от одного до другого, мало увеличить вычислительную мощность компьютеров, надо ещё дать им разум. Ученые пока ещё не видят однозначного способа как это сделать.

Искусственный сверхинтеллект. Именно этот вид искусственного интеллекта и привлекает широкое внимание. Во многом потому, что возможность его создания многими учеными воспринимается как опасность для человечества. SkyNet - иллюстрация такой угрозы.

Сверхинтеллект будет умнее любого из людей. Он будет превосходить человека практически в любой сфере. Сможет решать сложнейшие задачи и делать научные открытия. Как поведет себя разумная машина в отношении с человечеством?

Ученые предполагают три модели взаимодействия:

Оракул - мы сможем получить ответ на любой сложнейший вопрос.

Джин - все что нам нужно он сделает сам, используя для этого хоть молекулярный ассемблер, хоть роботизированные лаборатории и заводы, работающие без участия человека.

Суверен - сам найдёт проблему и сам её решит.

Как видим, в термине «искусственный интеллект» кроется целых три формы существования искусственного интеллекта. И отличия их друг от друга значительные, как и последствия перехода от одного ИИ к другому. Можем ли мы определить уровень интеллекта умных машин, что бы понимать с кем имеем дело?

Как измерить искусственный интеллект?


Люди отличаются друг от друга уровнем интеллекта. Для его количественной оценки применяются специальные тесты. Тест на IQ многим известен. А как меряют интеллект машин?

Если некритично подойти к сообщениям СМИ, то интеллектуальный уровень современных машин варьируется между IQ 4-х летнего ребенка и 13-летнего подростка. Эти два числа иллюстрируют два подхода к измерению интеллектуальности машин.

В 2015 году коллектив ученых из Иллинойса проверил систему искусственного интеллекта ConceptNet созданную в Массачусетском технологическом институте с использованием стандартного теста на IQ для детей в возрасте от 2,5 до 7 лет. Результат машины соответствовал средним показателям четырехлетнего ребенка.

Помимо применения тестов рассчитанных на человека широко известен и применяется специальный тест предназначенный для машин. Тест Тьюринга призван определить может ли машина мыслить.

Тест заключается в следующем. Один человек – судья общается с двумя собеседниками, которых он не видит. Все взаимодействие ведется путем переписки с помощью компьютера-посредника. Одним из собеседников является человек, а другим компьютерная программа, выдающая себя за человека. Если судья не сможет определенно сказать, кто из его собеседников является программой, то считается что машина прошла тест.

До настоящего времени тест Тьюринга был пройден лишь однажды. В 2014 году программа Eugene Goostman, имитировавшая 13-летнего подростка, названного разработчиками Женей Густманом, смогла ввести в заблуждение судей и выдать себя за человека.

Впрочем, против подобных тестов существует множество возражений. И компьютеры, и их программы на сегодняшний день являются носителями слабого - узконаправленного искусственного интеллекта. Такой интеллект может только имитировать человека который проходит тест.

Все изменится при переходе от слабого искусственного интеллекта к сильному. Машина наделённая общим искусственным интеллектом, который будет подобен интеллекту человека, уже будет обладать сознанием и самосознанием, а следовательно будет мыслить. Такой компьютер пройдёт стандартный тест на IQ, отвечая на вопросы сознательно, как это делает человек.

Коэффициент уровня интеллекта человека колеблется от 85 до 130. Эти же показатели будут доступны и общему ИИ. А вот верхний уровень IQ искусственного сверхинтеллекта ограничений иметь не будет. Это может быть и 1 000 и 10 000. Что нас ждёт по мере совершенствования ИИ?

В этом году компания «Яндекс» запустила голосового помощника «Алиса». Новый сервис позволяет пользователю прослушивать новости и погоду, получать ответы на вопросы и просто общаться с ботом. «Алиса» иногда дерзит , порой кажется почти разумной и по-человечески саркастичной , но часто не может разобраться, о чём её спрашивают, и садится в лужу.

Всё это породило не только волну шуток, но и новый виток дискуссий о развитии искусственного интеллекта. Новости о том, чего добились умные алгоритмы, сегодня приходят чуть ли не каждый день, а машинное обучение называют одним из самых перспективных направлений, которому можно себя посвятить.

Чтобы прояснить главные вопросы об искусственном интеллекте, мы побеседовали с Сергеем Марковым, специалистом по искусственному интеллекту и методам машинного обучения, автором одной из самых сильных отечественных шахматных программ SmarThink и создателем проекта «XXII век» .

Сергей Марков,

специалист по искусственному интеллекту

Развенчивая мифы об ИИ

так что же такое «искусственный интеллект»?

Понятию «искусственный интеллект» в какой-то мере не повезло. Возникшее изначально в научной среде, оно со временем проникло в фантастическую литературу, а через неё - в поп-культуру, где претерпело целый ряд изменений, обросло множеством интерпретаций и в конце-концов было совершенно мистифицировано.

Именно поэтому мы часто слышим от неспециалистов примерно такие заявления: «ИИ не существует», «ИИ невозможно создать». Непонимание сути исследований, ведущихся в сфере ИИ, легко приводит людей и к другим крайностям - например, современным системам ИИ приписывают наличие сознания, свободной воли и секретных мотивов.

Давайте попробуем отделить мух от котлет.

В науке искусственным интеллектом называют системы, предназначенные для решения интеллектуальных задач.

В свою очередь, интеллектуальная задача - это задача, которую люди решают при помощи собственного интеллекта. Заметим, что в данном случае специалисты сознательно уходят от определения понятия «интеллект», поскольку до появления систем ИИ единственным примером интеллекта был интеллект человеческий, и определить понятие интеллекта на основе единственного примера - то же самое, что пытаться провести прямую через единственную точку. Таких прямых может оказаться сколько угодно много, а значит, спор о понятии интеллекта можно было бы вести столетиями.

«сильный» и «слабый» искусственный интеллект

Системы ИИ делятся на две большие группы.

Прикладной искусственный интеллект (также используют термин «слабый ИИ» или «узкий ИИ», в английской традиции - weak/applied/narrow AI) - это ИИ, предназначенный для решения какой-либо одной интеллектуальной задачи или их небольшого множества. К этому классу относятся системы для игры в шахматы, го, распознавания образов, речи, принятия решения о выдаче или невыдаче банковского кредита и так далее.

В противоположность прикладному ИИ вводят понятие универсального искусственного интеллекта (также «сильный ИИ», по-английски - strong AI/Artificial General Intelligence) - то есть, гипотетического (пока что) ИИ, способного решать любые интеллектуальные задачи.

Часто люди, не зная терминологии, отождествляют ИИ с сильным ИИ, из-за этого и возникают суждения в духе «ИИ не существует».

Сильного ИИ действительно пока не существует. Практически все успехи, которые мы наблюдаем в последнее десятилетие в области ИИ, - это успехи прикладных систем. Эти успехи нельзя недооценивать, так как прикладные системы в ряде случаев способны решать интеллектуальные задачи лучше, чем это делает универсальный человеческий интеллект.

Я думаю, вы заметили, что понятие ИИ - довольно широкое. Скажем, устный счёт - это тоже интеллектуальная задача, и это значит, что любая счётная машина будет считаться системой ИИ. А как насчёт счётов? Абака ? Антикитерского механизма ? Действительно, всё это формально хотя и примитивные, но системы ИИ. Однако обычно, называя какую-то систему системой ИИ, мы тем самым подчёркиваем сложность решаемой этой системой задачи.

Совершенно очевидно, что разделение интеллектуальных задач на простые и сложные - весьма искусственное, и наши представления о сложности тех или иных задач постепенно меняются. Механическая счётная машина была чудом техники в XVII веке, но сегодня людей, с детства сталкивающихся с куда более сложными механизмами, она уже не способна впечатлить. Когда игра машин в го или автомобильные автопилоты уже перестанут удивлять публику, наверняка найдутся люди, которые будут морщиться из-за того, что кто-то будет относить такие системы к ИИ.

«Роботы-отличники»: о способностях ИИ к обучению

Ещё одно забавное заблуждение - всенепременное наличие у систем ИИ способности к самообучению. С одной стороны, это совсем не обязательное свойство систем ИИ: есть множество удивительных систем, не способных самообучаться, но, тем не менее, решающих многие задачи лучше человеческого мозга. С другой стороны, некоторые люди просто не знают того, что самообучение - свойство, которые многие системы ИИ обрели ещё более полусотни лет назад.

Когда в 1999 году я писал свою первую шахматную программу, самообучение уже было совершенно общим местом в этой области - программы умели запоминать опасные позиции, подстраивать под себя дебютные варианты, регулировать стиль игры, подстраиваясь под соперника. Конечно, тем программам было ещё очень далеко до Alpha Zero . Тем не менее, даже системы, обучающиеся поведению на основе взаимодействия с другими системами в ходе экспериментов по так называемому «обучению с подкреплением», уже существовали. Однако по необъяснимой причине некоторые люди до сих пор думают, что способность к самообучению - это прерогатива человеческого интеллекта.

Машинное обучение, целая научная дисциплина, занимается процессами обучения машин решению тех или иных задач.

Существует два больших полюса машинного обучения - обучение с учителем и обучение без учителя.

При обучении с учителем у машины уже есть некоторое количество условно правильных решений для некоторого набора случаев. Задача обучения в таком случае заключается в том, чтобы научить машину на основе имеющихся примеров принимать правильные решения в других, неизвестных ситуациях.

Другая крайность - обучение без учителя . То есть машину ставят в ситуацию, когда правильные решения неизвестны, имеются только данные в сыром, неразмеченном виде. Оказывается, и в таких случаях можно добиться некоторого успеха. Например, можно научить машину выявлению семантических отношений между словами языка на основе анализа очень большого набора текстов.

Одна из разновидностей обучения с учителем - это обучение с подкреплением (reinforcement learning). Идея заключается в том, что система ИИ выступает в роли агента, помещённого в некоторую модельную среду, в которой она может взаимодействовать с другими агентами, например, с собственными копиями, и получать от среды некоторую обратную связь через функцию вознаграждения. Например, шахматная программа, которая играет сама с собой, постепенно подстраивая свои параметры и тем самым постепенно усиливая собственную игру.

Обучение с подкреплением - довольно широкая область, в ней применяют множество интересных методов, начиная от эволюционных алгоритмов и заканчивая байесовской оптимизацией . Последние достижения в области ИИ для игр как раз связаны с усилением ИИ в ходе обучения с подкреплением.

Риски развития технологий: стоит ли бояться «Судного дня»?

Я не отношусь к числу ИИ-алармистов, и в этом смысле я отнюдь не одинок. Например, создатель стэнфордского курса по машинному обучению Эндрю Ын сравнивает проблему опасности ИИ с проблемой перенаселения Марса.

Действительно, в будущем вполне вероятно, что люди колонизируют Марс. Также вероятно, что рано или поздно на Марсе может возникнуть проблема перенаселения, но не совсем понятно, почему мы должны заниматься этой проблемой уже сейчас? Согласны с Ыном и Ян ЛеКун - создатель свёрточных нейронный сетей, и его шеф Марк Цукерберг, и Йошуа Беньо - человек, во многом благодаря исследованиям которого современные нейронные сети способны решать сложные задачи в области обработки текстов.

Чтобы изложить мои взгляды на эту проблему, потребуется, вероятно, несколько часов, поэтому остановлюсь только на основных тезисах.

1. НЕЛЬЗЯ ОГРАНИЧИВАТЬ РАЗВИТИЕ ИИ

Алармисты рассматривают риски, связанные с потенциальным разрушительным воздействием ИИ, при этом игнорируя риски, связанные с попыткой ограничить или даже остановить прогресс в этой области. Технологическое могущество человечества возрастает чрезвычайно быстрыми темпами, что приводит к эффекту, который я называю «удешевлением апокалипсиса».

150 лет назад при всём желании человечество не могло нанести невосполнимого урона ни биосфере, ни себе как виду. Для реализации катастрофического сценария 50 лет назад необходимо было бы сконцентрировать всю технологическую мощь ядерных держав. Завтра для воплощения в жизнь глобальной техногенной катастрофы может хватить и небольшой горстки фанатиков.

Наша технологическая мощь растёт куда быстрее, чем способность человеческого интеллекта эту мощь контролировать.

Если на смену человеческому интеллекту с его предрассудками, агрессией, заблуждениями и ограниченностью не придёт система, способная принимать более взвешенные решения (будь то ИИ или, что я считаю более вероятным, технологически улучшенный и объединённый с машинами в единую систему человеческий интеллект), нас может ждать глобальная катастрофа.

2. создание сверхинтеллекта принципиально невозможно

Существует идея о том, что ИИ будущего всенепременно будет сверхинтеллектом, превосходящим людей даже сильнее, чем люди превосходят муравьёв. Боюсь в данном случае разочаровать и технологических оптимистов - наша Вселенная содержит целый ряд фундаментальных физических ограничений, которые, по всей видимости, сделают создание сверхинтеллекта невозможным.

Например, скорость передачи сигнала ограничена скоростью света, а на планковских масштабах появляется неопределённость Гейзенберга. Отсюда вытекает первый фундаментальный предел - предел Бремерманна, вводящий ограничения на максимальную скорость вычислений для автономной системы заданной массы m.

Другой предел связан с принципом Ландауэра , в соответствии с которым существует минимальное количество теплоты, выделяемое при обработке 1 бита информации. Слишком быстрые вычисления вызовут недопустимый разогрев и разрушение системы. В действительности, современные процессоры от лимита Ландауэра отделяет менее чем тысячекратное отставание. Казалось бы, 1000 - это довольно много, однако ещё одна проблема заключается в том, что многие интеллектуальные задачи относятся к классу сложности EXPTIME. Это означает, что время, необходимое для их решения, является экспоненциальной функцией от размерности задачи. Ускорение системы в несколько раз даёт лишь константный прирост «интеллекта».

В общем, есть очень серьёзные основания полагать, что сверхинтеллектуального сильного ИИ не получится, хотя, конечно, уровень человеческого интеллекта вполне может быть превзойдён. Насколько это опасно? Скорее всего, не очень.

Представьте себе, что вы внезапно начали думать в 100 раз быстрее остальных людей. Значит ли это, что вы легко будете способны уговорить любого прохожего отдать вам свой кошелёк?

3. мы беспокоимся совсем не о том

К сожалению, в результате спекуляций алармистов на страхах публики, воспитанной на «Терминаторе» и знаменитом HAL 9000 Кларка и Кубрика, происходит смещение акцентов в сфере безопасности ИИ в сторону анализа маловероятных, но эффектных сценариев. При этом реальные опасности ускользают из виду.

Любая достаточно сложная технология, претендующая на то, чтобы занять важное место в нашем технологическом ландшафте, безусловно приносит с собой специфические риски. Множество жизней было погублено паровыми машинами - на производстве, на транспорте и так далее - прежде чем были выработаны эффективные правила и меры по обеспечению безопасности.

Если говорить о прогрессе в области прикладного ИИ, можно обратить внимание на связанную с ним проблему так называемого «Цифрового тайного суда» . Всё больше и больше прикладных систем ИИ принимает решения по вопросам, затрагивающим жизнь и здоровье людей. Сюда относятся и медицинские диагностические системы, и, например, системы, принимающие в банках решения о выдаче или невыдаче кредита клиенту.

В то же время структура используемых моделей, наборы используемых факторов и другие детали процедуры принятия решения скрыты коммерческой тайной от человека, чья судьба находится на кону.

Используемые модели могут основывать свои решения на мнениях учителей-экспертов, допускавших систематические ошибки или имевших те или иные предрассудки - расовые, гендерные.

ИИ, обученный на решениях таких экспертов, будет добросовестно воспроизводить эти предрассудки в своих решениях. В конце концов эти модели могут содержать в себе специфические дефекты.

Этими проблемами сейчас мало кто занимается, поскольку, конечно, SkyNet, развязывающий ядерную войну, это, безусловно, куда более зрелищно.

Нейросети как «горячий тренд»

С одной стороны, нейронные сети - это одна из самых старинных моделей, применяющихся для создания систем ИИ. Появившиеся изначально в результате применения бионического подхода , они довольно быстро убежали от своих биологических прототипов. Исключением тут являются только импульсные нейронные сети (впрочем, пока не нашедшие широкого применения в индустрии).

Прогресс последних десятилетий связан с развитием технологий глубокого обучения - подхода, при котором нейронные сети собирают из большого количество слоёв, каждый из которых построен на основе определённых регулярных паттернов.

Помимо создания новых нейросетевых моделей важный прогресс был также достигнут в области технологий обучения. Сегодня нейронные сети учат уже не при помощи центральных процессоров компьютеров, а с использованием специализированных процессоров, способных быстро производить матричные и тензорные вычисления. Наиболее распространённый на сегодняшний день вид таких устройств - видеокарты. Впрочем, активно ведётся разработка ещё более специализированных устройств для обучения нейросетей.

В целом, безусловно, нейронные сети на сегодняшний день, - это одна из основных технологий в области машинного обучения, которой мы обязаны решению многих задач, ранее решавшихся неудовлетворительно. С другой стороны, конечно, нужно понимать, что нейронные сети не являются панацеей. Для некоторых задач они - далеко не самый эффективный инструмент.

Так насколько умны нынешние роботы на самом деле?

Всё познаётся в сравнении. На фоне технологий 2000-го года нынешние достижения выглядят настоящим чудом. Всегда найдутся люди, любящие побрюзжать. 5 лет назад они вовсю трындели о том, что машины никогда не выиграют у людей в го (ну или, по крайней мере, выиграют очень нескоро). Говорили о том, что машина никогда не сможет нарисовать с нуля картину, в то время как сегодня люди практически неспособны отличать картины, созданные машинами, от картин неизвестных им художников. В конце прошлого года машины научились синтезировать речь, практически неотличимую от человеческой, а в последние годы от музыки, создаваемой машинами, не вянут уши.

Посмотрим, что будет завтра. Я смотрю на эти области применения ИИ с большим оптимизмом.

Перспективные направления: где начать погружение в сферу ИИ?

Я бы посоветовал постараться на хорошем уровне освоить один из популярных нейросетевых фреймворков и один из популярных в области машинного обучения языков программирования (наиболее популярна на сегодняшний день связка TensorFlow + Python).

Овладев этими инструментами и имея в идеале крепкую базу в области математической статистики и теории вероятностей, следует направить свои усилия в ту сферу, которая будет наиболее интересна лично вам.

Интерес к предмету работы - один из самых важных ваших помощников.

Потребность в специалистах по машинному обучению существует в самых разных областях - в медицине, в банковском деле, в науке, на производстве, поэтому сегодня хорошему специалисту предоставлен как никогда широкий выбор. Потенциальные преимущества любой из этих отраслей мне представляются несущественными по сравнению с тем, что работа будет приносить вам удовольствие.

Искусственный интеллект

Искусственный интеллект - раздел информатики, изучающий возможность обеспечения разумных рассуждений и действий с помощью вычислительных систем и иных искусственных устройств. При этом в большинстве случаев заранее неизвестен алгоритм решения задачи.

Точного определения этой науки не существует, так как в философии не решён вопрос о природе и статусе человеческого интеллекта. Нет и точного критерия достижения компьютерами «разумности», хотя на заре искусственного интеллекта был предложен ряд гипотез, например, тест Тьюринга или гипотеза Ньюэлла - Саймона. На данный момент есть множество подходов как к пониманию задачи ИИ, так и созданию интеллектуальных систем.

Так, одна из классификаций выделяет два подхода к разработке ИИ:

нисходящий, семиотический - создание символьных систем, моделирующих высокоуровневые психические процессы: мышление, рассуждение, речь, эмоции, творчество и т. д.;

восходящий, биологический - изучение нейронных сетей и эволюционные вычисления, моделирующих интеллектуальное поведение на основе более мелких «неинтеллектуальных» элементов.

Эта наука связана с психологией, нейрофизиологией, трансгуманизмом и другими. Как и все компьютерные науки, она использует математический аппарат. Особое значение для неё имеют философия и робототехника.

Искусственный интеллект - очень молодая область исследований, старт которой был дан в 1956 году. Её исторический путь напоминает синусоиду, каждый «взлёт» которой инициировался какой-либо новой идеей. В настоящий момент её развитие находится на «спаде», уступая место применению уже достигнутых результатов в других областях науки, промышленности, бизнесе и даже повседневной жизни.

Подходы к изучению

Существуют различные подходы к построению систем ИИ. На данный момент можно выделить 4 достаточно различных подхода:

1. Логический подход. Основой для логического подхода служит Булева алгебра. Каждый программист знаком с нею и с логическими операторами с тех пор, когда он осваивал оператор IF. Свое дальнейшее развитие Булева алгебра получила в виде исчисления предикатов - в котором она расширена за счет введения предметных символов, отношений между ними, кванторов существования и всеобщности. Практически каждая система ИИ, построенная на логическом принципе, представляет собой машину доказательства теорем. При этом исходные данные хранятся в базе данных в виде аксиом, правила логического вывода как отношения между ними. Кроме того, каждая такая машина имеет блок генерации цели, и система вывода пытается доказать данную цель как теорему. Если цель доказана, то трассировка примененных правил позволяет получить цепочку действий, необходимых для реализации поставленной цели (такая система известна как экспертные системы). Мощность такой системы определяется возможностями генератора целей и машиной доказательства теорем. Добиться большей выразительности логическому подходу позволяет такое сравнительно новое направление, как нечеткая логика. Основным ее отличием является то, что правдивость высказывания может принимать в ней кроме да/нет (1/0) еще и промежуточные значения - не знаю (0.5), пациент скорее жив, чем мертв (0.75), пациент скорее мертв, чем жив (0.25). Данный подход больше похож на мышление человека, поскольку он на вопросы редко отвечает только да или нет.

2. Под структурным подходом мы подразумеваем здесь попытки построения ИИ путем моделирования структуры человеческого мозга. Одной из первых таких попыток был перцептрон Френка Розенблатта. Основной моделируемой структурной единицей в перцептронах (как и в большинстве других вариантов моделирования мозга) является нейрон. Позднее возникли и другие модели, которые большинству известны под термином нейронные сети (НС). Эти модели различаются по строению отдельных нейронов, по топологии связей между ними и по алгоритмам обучения. Среди наиболее известных сейчас вариантов НС можно назвать НС с обратным распространением ошибки, сети Хопфилда, стохастические нейронные сети. В более широком смысле такой подход известен как Коннективизм.

3. Эволюционный подход. При построении систем ИИ по данному подходу основное внимание уделяется построению начальной модели, и правилам, по которым она может изменяться (эволюционировать). Причем модель может быть составлена по самым различным методам, это может быть и НС и набор логических правил и любая другая модель. После этого мы включаем компьютер и он, на основании проверки моделей отбирает самые лучшие из них, на основании которых по самым различным правилам генерируются новые модели. Среди эволюционных алгоритмов классическим считается генетический алгоритм

4. Имитационный подход. Данный подход является классическим для кибернетики с одним из ее базовых понятий черный ящик. Объект, поведение которого имитируется, как раз и представляет собой «черный ящик». Нам не важно, что у него и у модели внутри и как он функционирует, главное, чтобы наша модель в аналогичных ситуациях вела себя точно так же. Таким образом здесь моделируется другое свойство человека - способность копировать то, что делают другие, не вдаваясь в подробности, зачем это нужно. Зачастую эта способность экономит ему массу времени, особенно в начале его жизни.

В рамках гибридных интеллектуальных систем пытаются объединить эти направления. Экспертные правила умозаключений могут генерироваться нейронными сетями, а порождающие правила получают с помощью статистического обучения.

Многообещающий новый подход, называемый усиление интеллекта, рассматривает достижение ИИ в процессе эволюционной разработки как побочный эффект усиления человеческого интеллекта технологиями.

Направления исследований

Анализируя историю ИИ, можно выделить такое обширное направление как моделирование рассуждений. Долгие годы развитие этой науки двигалось именно по этому пути, и теперь это одна из самых развитых областей в современном ИИ. Моделирование рассуждений подразумевает создание символьных систем, на входе которых поставлена некая задача, а на выходе требуется её решение. Как правило, предлагаемая задача уже формализована, т. е. переведена в математическую форму, но либо не имеет алгоритма решения, либо он слишком сложен, трудоёмок и т. п. В это направление входят: доказательство теорем, принятие решений и теория игр, планирование и диспетчеризация, прогнозирование.

Немаловажным направлением является обработка естественного языка, в рамках которого проводится анализ возможностей понимания, обработки и генерации текстов на «человеческом» языке. В частности, здесь ещё не решена проблема машинного перевода текстов с одного языка на другой. В современном мире большую роль играет разработка методов информационного поиска. По своей природе, оригинальный тест Тьюринга связан с этим направлением.

Согласно мнению многих учёных, важным свойством интеллекта является способность к обучению. Таким образом, на первый план выходит инженерия знаний, объединяющая задачи получения знаний из простой информации, их систематизации и использования. Достижения в этой области затрагивают почти все остальные направления исследований ИИ. Здесь также нельзя не отметить две важные подобласти. Первая из них - машинное обучение - касается процесса самостоятельного получения знаний интеллектуальной системой в процессе её работы. Второе связано с созданием экспертных систем - программ, использующих специализированные базы знаний для получения достоверных заключений по какой-либо проблеме.

Большие и интересные достижения имеются в области моделирования биологических систем. Строго говоря, сюда можно отнести несколько независимых направлений. Нейронные сети используются для решения нечётких и сложных проблем, таких как разпознавание геометрических фигур или кластеризация объектов. Генетический подход основан на идее, что некий алгоритм может стать более эффективным, если позаимствует лучшие характеристики у других алгоритмов («родителей»). Относительно новый подход, где ставится задача создания автономной программы - агента, взаимодействующего с внешней средой, называется агентным подходом. А если должным образом заставить массу «не очень интеллектуальных» агентов взаимодействовать вместе, то можно получить «муравьиный» интеллект.

Задачи распознавание образов уже частично решаются в рамках других направлений. Сюда относятся распознавание символов, рукописного текста, речи, анализ текстов. Особо стоит упомянуть компьютерное зрение, которое связано с машинным обучением и робототехникой.

Вообще, робототехника и искусственный интеллект часто ассоциируется друг с другом. Интегрирование этих двух наук, создание интеллектуальных роботов, можно считать ещё одним направлением ИИ.

Особняком держится машинное творчество, в связи с тем, что природа человеческого творчества ещё менее изучена, чем природа интеллекта. Тем не менее, эта область существует, и здесь поставлены проблемы написания компьютером музыки, литературных произведений (часто - стихов или сказок), художественное творчество.

Наконец, существует масса приложений искусственного интеллекта, каждое из которых образует почти самостоятельное направление. В качестве примеров можно привести программирование интеллекта в компьютерных играх, нелинейное управление, интеллектуальные системы безопасности.

Можно заметить, что многие области исследований пересекаются. Это свойственно для любой науки. Но в искусственном интеллекте взаимосвязь между, казалось бы, различными направлениями выражена особенно сильно, и это связано с философским спором о сильном и слабом ИИ.

В начале XVII века Рене Декарт предположил, что животное - некий сложный механизм, тем самым сформулировав механистическую теорию. В 1623 г. Вильгельм Шикард построил первую механическую цифровую вычислительную машину, за которой последовали машины Блеза Паскаля (1643) и Лейбница (1671). Лейбниц также был первым, кто описал современную двоичную систему счисления, хотя до него этой системой периодически увлекались многие великие ученые. В XIX веке Чарльз Бэббидж и Ада Лавлейс работали над программируемой механической вычислительной машиной.

В 1910-1913 гг. Бертран Рассел и А. Н. Уайтхэд опубликовали работу «Принципы математики», которая произвела революцию в формальной логике. В 1941 Конрад Цузе построил первый работающий программно-контролируемый компьютер. Уоррен Маккалок и Валтер Питтс в 1943 опубликовали A Logical Calculus of the Ideas Immanent in Nervous Activity, который заложил основы нейронных сетей.

Современное положение дел

В настоящий момент (2008) в создании искусственного интеллекта (в первоначальном смысле этого слова, экспертные системы и шахматные программы сюда не относятся) наблюдается дефицит идей. Практически все подходы были опробованы, но к возникновению искусственного разума ни одна исследовательская группа так и не подошла.

Некоторые из самых впечатляющих гражданских ИИ систем:

Deep Blue - победил чемпиона мира по шахматам. (Матч Каспаров против суперЭВМ не принёс удовлетворения ни компьютерщикам, ни шахматистам и система не была признана Каспаровым, хотя оригинальные компактные шахматные программы неотъемлемый элемент шахматного творчества. Затем линия суперкомпьютеров IBM проявилась в проектах brute force BluGene (молекулярное моделирование) и моделирование системы пирамидальных клеток в швейцарском центре Blue Brain. Данная история - пример запутанных и засекреченных отношений ИИ, бизнеса, и национальных стратегических задач.)

Mycin - одна из ранних экспертных систем, которая могла диагностировать небольшой набор заболеваний, причем часто так же точно как и доктора.

20q - проект, основанный на идеях ИИ, по мотивам классической игры «20 вопросов». Стал очень популярен после появления в интернете на сайте 20q.net.

Распознавание речи. Системы такие как ViaVoice способны обслуживать потребителей.

Роботы в ежегодном турнире RoboCup соревнуются в упрощённой форме футбола.

Применение ИИ

Банки применяют системы искусственного интеллекта (СИИ) в страховой деятельности (актуарная математика) при игре на бирже и управлении собственностью. В августе 2001 года роботы выиграли у людей в импровизированном соревновании по трейдингу (BBC News, 2001). Методы распознавания образов, (включая, как более сложные и специализированные, так и нейронные сети) широко используют при оптическом и акустическом распознавании (в том числе текста и речи), медицинской диагностике, спам-фильтрах, в системах ПВО (определение целей), а также для обеспечения ряда других задач национальной безопасности.

Разработчики компьютерных игр вынуждены применять ИИ той или иной степени проработанности. Стандартными задачами ИИ в играх являются нахождение пути в двухмерном или трёхмерном пространстве, имитация поведения боевой единицы, расчёт верной экономической стратегии и так далее.

Перспективы ИИ

Просматриваются два направления развития ИИ:

первое заключается в решении проблем связанных с приближением специализированных систем ИИ к возможностям человека и их интеграции, которая реализована природой человека.

второе заключается в создании Искусственного Разума, представляющего интеграцию уже созданных систем ИИ в единую систему, способную решать проблемы человечества.

Связь с другими науками

Искусственный интеллект тесно связан с трансгуманизмом. А вместе с нейрофизиологией и когнитивной психологией он образует более общую науку, называемую когнитологией. Отдельную роль в искусственном интеллекте играет философия.

Философские вопросы

Наука «о создании искусственного разума» не могла не привлечь внимание философов. С появлением первых интеллектуальных систем были затронуты фундаментальные вопросы о человеке и знании, а отчасти о мироустройстве. С одной стороны, они неразрывно связаны с этой наукой, а с другой - привносят в неё некоторый хаос. Среди исследователей ИИ до сих пор не существует какой-либо доминирующей точки зрения на критерии интеллектуальности, систематизацию решаемых целей и задач, нет даже строгого определения науки.

Может ли машина мыслить?

Наиболее горячие споры в философии искусственного интеллекта вызывает вопрос возможности мышления творения человеческих рук. Вопрос «Может ли машина мыслить?», который подтолкнул исследователей к созданию науки о моделировании человеческого разума, был поставлен Аланом Тьюрингом в 1950 году. Две основных точки зрения на этот вопрос носят названия гипотез сильного и слабого искусственного интеллекта.

Термин «сильный искусственный интеллект» ввел Джон Сёрль, его же словами подход и характеризуется:

«Более того, такая программа будет не просто моделью разума; она в буквальном смысле слова сама и будет разумом, в том же смысле, в котором человеческий разум - это разум» .

Напротив, сторонники слабого ИИ предпочитают рассматривать программы лишь как инструмент, позволяющий решать те или иные задачи, которые не требуют полного спектра человеческих познавательных способностей.

В своем мысленном эксперименте «Китайская комната», Джон Сёрль показывает, что прохождение теста Тьюринга не является критерием наличия у машины подлинного процесса мышления.

Мышление есть процесс обработки находящейся в памяти информации: анализ, синтез и самопрограмированние.

Аналогичную позицию занимает и Роджер Пенроуз, который в своей книге «Новый ум короля» аргументирует невозможность получения процесса мышления на основе формальных систем.

Существуют разные точки зрения на этот вопрос. Аналитический подход предполагает анализ высшей нервной деятельности человека до низшего, неделимого уровня (функция высшей нервной деятельности, элементарная реакция на внешние раздражители (стимулы), раздражение синапсов совокупности связанных функцией нейронов) и последующее воспроизведение этих функций.

Некоторые специалисты за интеллект принимают способность рационального, мотивированного выбора, в условиях недостатка информации. То есть интелектуальной просто считается та программа деятельности (не обязательно реализованная на современных ЭВМ), которая сможет выбрать из определенного множества альтернатив, например, куда идти в случае «налево пойдёшь …», «направо пойдёшь …», «прямо пойдёшь…»

Наука о знании

Также, с проблемами искусственного интеллекта тесно связана эпистемология - наука о знании в рамках философии. Философы, занимающиеся данной проблематикой, решают вопросы, схожие с теми, которые решаются инженерами ИИ о том, как лучше представлять и использовать знания и информацию.

Отношение к ИИ в обществе

ИИ и религия

Среди последователей авраамических религий существует несколько точек зрения на возможность создания ИИ на основе структурного подхода.

По одной из них мозг, работу которого пытаются имитировать системы, по их мнению, не участвует в процессе мышления, не является источником сознания и какой-либо другой умственной деятельности. Создание ИИ на основе структурного подхода невозможно.

В соответствии с другой точкой зрения, мозг участвует в процессе мышления, но в виде "передатчика" информации от души. Мозг ответственен за такие "простые" функции, как безусловные рефлексы, реакция на боль и тп. Создание ИИ на основе структурного подхода возможно, если конструируемая система сможет выполнять "передаточные" функции.

Обе позиции не соответствуют данным современной науки, т.к. понятие душа не рассматривается современной наукой в качестве научной категории.

По мнению многих буддистов ИИ возможен. Так, духовный лидер далай-лама XIV не исключает возможности существования сознания на компьютерной основе.

Раэлиты активно поддерживают разработки в области искусственного интеллекта.

ИИ и научная фантастика

В научно-фантастической литературе ИИ чаще всего изображается как сила, которая пытается свергнуть власть человека (Омниус, HAL 9000, Скайнет, Colossus , Матрица и репликант) или обслуживающий гуманоид (C-3PO, Data, KITT и KARR, Двухсотлетний человек). Неизбежность доминирования над миром ИИ, вышедшего из под контроля, оспаривается такими фантастами как Айзек Азимов и Kevin Warwick.

Любопытное видение будущего представлено в романе «Выбор по Тьюрингу» писателя-фантаста Гарри Гаррисона и ученого Марвина Мински. Авторы рассуждают на тему утраты человечности у человека, в мозг которого была вживлена ЭВМ, и приобретения человечности машиной с ИИ, в память которой была скопирована информация из головного мозга человека.

Некоторые научные фантасты, например Вернор Виндж, также размышляли над последствиями появления ИИ, которое, по-видимому, вызовет резкие драматические изменения в обществе. Такой период называют технологической сингулярностью.