Распростарнение радиоволн. Школьная энциклопедия Глубина проникновения радиоволн в различные среды

В большинстве случаев приемная и передающая антенны или хотя бы одна из них размещаются на таких расстояниях от земной поверхности, при которых необходимо учитывать ее влияние на распространение радиоволн. При этом электрическое поле в месте приема можно представить как совокупность первичного поля, соответствующего полю вибратора в неограниченной однородной среде при отсутствии земной поверхности, и вторичного поля, обусловленного общим влиянием Земли на процессы распространения радиоволн.

Для определения величины напряженности электрического поля прежде всего необходимо знать электрические параметры - диэлектрическую проницаемость и проводимость различных видов земной поверхности. В табл. 2.1 указаны величины электрических параметров наиболее типичных видов земной поверхности в широком диапазоне волн. Эти величины определялись экспериментально по поглощению и отражению радиоволн различными поверхностями. Характерно, что для земной поверхности, однородной по глубине, во всем диапазоне радиоволн длиннее метровых параметры ε и γ не зависят от рабочей частоты, а на дециметровых и более коротких волнах ε уменьшается, а γ возрастает с повышением частоты.

Большая часть (71%) земного шара представляет собой водную поверхность. Электрические свойства воды зависят от степени ее солености: с увеличением солености увеличивается удельная электрическая проводимость γ (на волнах длиннее 3 см).

Условно рассматривают морскую и пресную воду, хотя содержание солей в воде различных морей неодинаково. Вода пресных водоемов также содержит различные примеси. Поэтому в табл. 2.1 указаны пределы возможного изменения величины γ.

Электрические свойства почвы зависят от ее структуры, степени влажности, однородности, температуры. С увеличением влажности электропроводность почвы возрастает.

Земная поверхность неоднородна по глубине. Обычно ее можно представить как структуру, состоящую из верхнего слоя, имеющего толщину не больше нескольких метров, и нижнего, простирающегося до бесконечности. Соотношение диэлектрических проницаемостей и проводимостей слоев может быть различным. Так, если верхний слой более влажный, а ниже идет сухой грунт, то величины ε и γ в верхнем слое больше, чем в нижнем; при промерзании верхнего слоя его параметры ε и γ могут стать меньше, чем в нижнем слое.

Растительность, снег, лед, покрывающие почву, можно рассматривать как полупроводящие слои, лежащие на поверхности почвы.

Оценим соотношение плотности токов проводимости и токов смещения в различных видах земной поверхности. Используя формулу (1.38) и параметры ε и γ, указанные в табл. 2.1, видим, что для морской воды равенство плотности токов проводимости и токов смещения наступает при длине волны


Поэтому для радиоволн сантиметрового диапазона морскую воду можно считать диэлектриком.

Для влажной почвы условие 60γλ / ε = 1 выполняется на волне


Влажную почву можно рассматривать как диэлектрик для метровых и более коротких волн.

Таким образом, для волн сантиметрового диапазона все виды земной поверхности имеют свойства, близкие к свойствам идеального диэлектрика.

Коэффициенты поглощения α и фазовой скорости β при распространении радиоволн в морской воде и влажной почве, на низких частотах, как видно из формулы (1.57), возрастают с повышением частоты. На высоких частотах эти величины, согласно уравнениям (1.54) и (1.56), перестают изменяться с повышением частоты, как это имеет место в идеальном диэлектрике. Графики частотной зависимости α и υ ф представлены на рис. 2.1 и 2.2.

Из графиков видно, что поглощение радиоволн в морской воде значительно превышает поглощение радиоволн во влажной почве.

Радиоволны, и их распространение, являются неоспоримой загадкой для начинающих любителей эфира. Здесь можно познакомиться с азами теории распространения радиоволн. Данная статья предназначена для ознакомления начинающих любителей эфира, а также и для тех, кто имеет некоторое представление о нём.

Самая главная вводная, про которую часто забывают сказать, прежде чем познакомить с теорией распространения радиоволн, так это то, что радиоволны распространяются вокруг нашей планеты за счет отражения от ионосферы и от земли как от полупрозрачных зеркал отражается луч света.

Особенности распространения средних волн и перекрёстная модуляция

К средним волнам относятся радиоволны длиной от 1000 до 100 м (частоты 0,3 — 3,0МГц). Средние волны используются главным образом для вещания. А так же они являются колыбелью отечественного радиопиратства. Они могут распространяться земным и ионосферным путём. Средние волны испытывают значительное поглощение в полупроводящей поверхности Земли, дальность распространения земной волны 1, (см. рис. 1), ограничена расстоянием 500-700 км. На большие расстояния радиоволны 2 и 3 распространяются ионосферной (пространственной) волной.

В ночное время средние волны распространяются путем отражения от слоя Е ионосферы (см. рис. 2), электронная плотность которого оказывается достаточной для этого. В дневные часы на пути распространения волны расположен слой D, чрезвычайно сильно поглощающий средние волны. Поэтому при обычных мощностях передатчиков, напряженность электрического поля недостаточна для приема, и в дневные часы распространение средних волн происходит практически только земной волной на сравнительно небольшие расстояния, порядка 1000 км. В диапазоне средних волн, более длинные волны испытывают меньшее поглощение, и напряженность электрического поля ионосферной волны больше на более длинных волнах. Поглощение увеличивается в летние месяцы и уменьшается в зимние. Ионосферные возмущения не влияют на распространение средних волн, так как слой Е мало нарушается во время ионосферно-магнитных бурь.

В ночные часы см. рис. 1, на некотором расстоянии от передатчика (точка В), возможен приход одновременно пространственной 3 и поверхностной волн 1, причем длина пути пространственной волны меняется с изменением электронной плотности ионосферы. Изменение разности фаз этих волн приводит к колебанию напряженности электрического поля, называемому ближним замиранием поля.

На значительное расстояние от передатчика (точка С) могут прийти волны 2 и 3 путем одного и двух отражений от ионосферы. Изменение разности фаз этих двух волн также приводит к колебанию напряженности электрического поля, называемому дальним замиранием поля.

Для борьбы с замираниями на передающем конце линии связи применяются антенны, у которых максимум диаграммы направленности «прижат» к земной поверхности, к ним можно отнести простейшую антенну «Inverted-V», достаточно часто применяемую радиолюбителями. При такой диаграмме направленности зона ближних замираний удаляется от передатчика, а на больших расстояниях поле волны, пришедшей путем двух отражений, оказывается ослабленным.

К сожалению не все начинающие радиовещатели, работающие в диапазоне частот 1600-3000кГц знают, что слабый сигнал от маломощного передатчика подвержен ионосферным искажениям. Сигнал от более мощных радиопередатчиков ионосферным искажениям подвержен меньше. Ввиду нелинейной ионизации ионосферы, происходит модуляция слабого сигнала модулирующим напряжением сигналов мощных станций. Это явление называется перекрестной модуляцией. Глубина коэффициента модуляции достигает 5-8%. Со стороны приема создаётся впечатление не качественно выполненного передатчика, со всевозможными гулами и хрипами, особенно это заметно в режиме АМ модуляции.

За счет перекрестной модуляции в приемник часто проникают интенсивные грозовые помехи, которые невозможно отфильтровать — грозовой разряд модулирует принимаемый сигнал. Именно по этой причине радиовещатели для проведения двусторонней радиосвязи стали применять однополосные передатчики и стали чаще работать на более высоких частотах. Зарубежные радиовешатели СВ станций, умощняют их, и подвергают компрессии модулирующие сигналы, а для неискаженной работы в эфире, применяют инверсные частоты.

Явления демодуляции и перекрестной модуляции в ионосфере наблюдаются только в диапазоне средних волн (СВ). В диапазоне коротких волн (КВ) скорость электрона под действием электрического поля ничтожно мала по сравнению с его тепловой скоростью и присутствие поля не меняет числа столкновений электрона с тяжелыми частицами.

Наиболее благоприятны, в диапазоне частот от 1500 до 3000кГц для дальних связей, являются зимние ночи и периоды минимума солнечной активности. Особо дальние связи, более 10000 км, обычно возможны в часы захода и восхода солнца. В дневные часы связь возможна на расстояние до 300 км. Свободные радиовещатели FM диапазона могут только позавидовать таким большим радиотрассам.

В летнее время на этом диапазоне часто мешают помехи от статических разрядов в атмосфере.

Особенности распространения коротких волн и их характеристики

К коротким волнам относятся радиоволны длиной от 100 до 10 м (частоты 3-30 МГц). Преимуществом работы на коротких волнах по сравнению с работой на более длинных волнах является то, что в этом диапазоне можно легко создать направленные антенны. Короткие волны могут распространяться как земные, в низкочастотной части диапазона, и как ионосферные.

С повышением частоты сильно возрастает поглощение волн в полупроводящей поверхности Земли. Поэтому при обычных мощностях передатчика земные волны коротковолнового диапазона распространяются на расстояния, не превышающие нескольких десятков километров. На морской глади, это расстояние значительно увеличивается.

Ионосферной волной короткие волны могут распространяться на многие тысячи километров, причем для этого не требуется передатчиков большой мощности. Поэтому в настоящее время короткие волны используются главным образом для связи и вещания на большие расстояния.

Короткие волны распространяются на дальние расстояния путем отражения от ионосферы и поверхности Земли. Такой способ распространения называют скачковым см. рис. 2 и характеризуется расстоянием скачка, числом скачков, углами выхода и прихода, максимальной применимой частотой (МПЧ) и наименьшей применимой частотой (НПЧ).

Если ионосфера однородна в горизонтальном направлении, то и траектория волны симметрична. Обычно излучение происходит в некотором спектре углов, так как ширина диаграммы направленности коротковолновых антенн в вертикальной плоскости составляет 10-15°. Минимальное расстояние скачка, для которого выполняется условие отражения, называют расстоянием зоны молчания (ЗМ). Для отражения волны необходимо, чтобы рабочая частота была не выше значения, максимально применимой частоты (МПЧ), являющаяся верхней границей рабочего диапазона для данного расстояния. Волна 4.

Применение антенн зенитного излучения, как один из приёмов уменьшения зоны молчания, ограничивается понятием максимально применимой частоты (МПЧ) с учётом снижения её на 15-20% от МПЧ. Антенны зенитного излучения применяют для вещания в ближней зоне методом односкачкового отражения от ионосферы.

Второе условие ограничивает рабочий диапазон снизу: чем ниже рабочая частота (в пределах коротковолнового диапазона), тем сильнее поглощение волны в ионосфере. Наименьшую — применимую частоту (НПЧ) определяют из условия, что при мощности передатчика в 1кВт, напряженность электрического поля сигнала должна превышать уровень шумов, а следовательно, поглощение сигнала в слоях ионосферы должно быть не больше допустимого. Электронная плотность ионосферы меняется в течение суток, в течение года, и периода солнечной активности. Значит, изменяются и границы рабочего диапазона, что приводит к необходимости изменения рабочей длины волны в течение суток.

Диапазон частот 1,5–3 МГц, является ночным. Понятно, что для успешного проведения сеанса радиосвязи нужно каждый раз правильно выбирать частоту (длину волны), к тому же это усложняет конструкцию станции, но для настоящего ценителя дальних связей это не является трудностью, это часть хобби. Проведём оценку КВ диапазона по участкам.

Диапазон частот 5-8 мГц, во многом схож с диапазоном 3 мГц, и в отличае от него, здесь в дневное время можно связаться до 2000 км, зона молчания (ЗМ) отсутствует и составляет несколько десятков километров. В ночные часы возможна связь на любое расстояние за исключением ЗМ, которая увеличивается до нескольких сот километров. В часы смены времени суток (заход/восход), наиболее удобны для дальних связей. Атмосферные помехи менее выражены, чем в диапазоне 1,5-3 мГц.

В диапазоне частот 10-15 мГц в периоды солнечной активности возможны связи в дневное время суток практически с любой точкой земного шара. Летом продолжительность радиосвязи в этом диапазоне частот бывает круглосуточной, за исключением отдельных дней. Зона молчания ночью имеет расстояния в 1500-2000 км и по этому возможны только дальние связи. В дневное время они уменьшаются до 400-1000 км.

Диапазон частот 27-30 мГц пригоден для связи только в светлое время суток. Это самый капризный диапазон. Он обычно открывается на несколько часов, дней или недель особенно при смене сезонов, т.е. осенью и весной. Зона молчания (ЗМ) достигает 2000-2500 км. Это явление относится к теме МПЧ, здесь угол отраженной волны должен быть малым по отношению к ионосфере, иначе он имеет большое затухание в ионосфере, или простой уход в космические просторы. Малые углы излучения соответствуют большим скачкам и соответственно большим зонам молчания. В периоды максимума солнечной активности возможна связь и ночью.

Помимо перечисленных моделей, возможны случаи аномального распространения радиоволн. Аномальное распространение может возникнуть при появлении на пути волны спорадического слоя, от которого могут отражаться более короткие волны, вплоть до метровых. Это явление можно наблюдать на практике прохождением дальних телестанций и FM радиостанций. МПЧ радиосигнала в эти часы доходит до 60-100 мГц в годы солнечной активности.

В диапазоне УКВ FM, за исключением редких случаев аномального распространения радиоволн, распространение обусловлено строго так называемой «прямой видимостью». Распространение радиоволн в пределах прямой видимости говорит само за себя, и обусловлено высотой расположения передающей и приёмной антенн. Понятно, что в условиях городской застройки ни о какой визуальной и прямой видимости говорить нельзя, но радиоволны проходят сквозь городские застройки с некоторым ослаблением. Чем выше частота, тем выше затухание в городских застройках. Диапазон частот 88-108 МГц так же подвержен некоторым затуханиям в условиях города.

Замирание радиосигналов диапазона КВ

Приём коротких радиоволн всегда сопровождается измерением уровня принимаемого сигнала, причем это изменение носит случайный и временной характер. Такое явление называют замираниями (федингом) радиосигнала. В эфире наблюдаются быстрые и медленные фединги сигнала. Глубина фединга может достигать до нескольких десятков децибел.

Основной причиной быстрых замираний сигнала является многолучевое распространение радиоволн. В этом случае причиной федингов служит приход в точку приема двух лучей, распространяющихся путем одного и двух отражений от ионосферы, волна 1 и волна 3, см. рис 2.

Поскольку лучи проходят различные пути по расстоянию, фазы прихода их неодинаковы. Изменения электронной плотности, непрерывно происходящие в ионосфере, приводят к изменению длины пути каждого из лучей, а следовательно, и к изменению разности фаз между лучами. Для изменения фазы волны на 180° достаточно, чтобы длина пути изменилась всего на ½. Следует напомнить, что при приходе лучей одного сигнала в точку приёма с одинаковой силой и с разностью фаз на 180°, они полностью вычитаются по закону векторов, а сила приходящего сигнала в этом случае может быть равна нулю. Такие незначительные изменения длины пути могут происходить непрерывно, поэтому, колебания напряженности электрического поля в диапазоне коротких волн являются частыми и глубокими. Интервал их наблюдения в 3-7 минут может составлять на низких частотах КВ диапазона, и до 0,5 секунд на частотах ближе к 30 МГц.

Помимо этого, фединг сигнала вызываются рассеянием радиоволн на не однородностях ионосферы и интерференцией рассеянных волн.

Кроме интерференционных федингов, на коротких волнах, имеют место поляризационные фединги. Причиной поляризационных федингов является поворот плоскости поляризации волны относительно принимаемой антенны. Это происходит при распространении волны в направлении силовых линий магнитного поля Земли, и с изменением электронной плотности ионосферы. Если передающая и приемная антенны представляют собой горизонтальные вибраторы, то излученная горизонтально — поляризованная волна, после прохождения в ионосфере претерпит поворот плоскости поляризации. Это приводит к колебаниям э. д. с., наводимой в антенне, которое имеет дополнительное затухание до 10 дБ.

На практике все указанные причины замираний сигнала действуют, как правило, комплексно и подчиняются описанным законом распределения Релея.

Помимо быстрых замираний, наблюдаются медленные замирания, которые наблюдаются с периодом в 40-60 мин в низкочастотной части КВ диапазона. Причиной этих федингов является изменение поглощения радиоволн в ионосфере. Распределение огибающей амплитуды сигнала при медленных замираниях подчиняется нормально логарифмическому закону с уменьшением сигнала до 8-12 дБ.

Для борьбы с замираниями, на коротких волнах применяют метод приема на разнесенные антенны. Дело в том, что увеличение и уменьшение напряженности электрического поля происходят не одновременно даже на сравнительно небольшой площади земной поверхности. В практике коротковолновой связи используют обычно две антенны, разнесенные на расстояние нескольких длин волн, а сигналы складывают после детектирования. Эффективным является разнесение антенн по поляризации, т. е. одновременный прием на вертикальную и горизонтальную антенны с последующим сложением сигналов после детектирования.

Хочется отметить, что указанные меры борьбы действенны только для устранения быстрых замираний, медленные изменения сигнала не устраняются, так как это связано с изменением поглощения радиоволн в ионосфере.

В радиолюбительской практике метод разнесённых антенн используется довольно редко, ввиду конструктивной дороговизны и отсутствием необходимости приёма достаточно достоверной информации. Это связано с тем, что любители часто используют резонансные и диапазонные антенны, количество которых в его хозяйстве составляет около 2-3 штук. Использование разнесённого приёма требует увеличение парка антенн минимум вдвое.

Другое дело, когда любитель живёт в сельской местности, имея при этом достаточную площадь для размещения антифединговой конструкции, он может применить для этого просто два широкополосных вибратора, перекрывающие все, или почти все необходимые диапазоны. Один вибратор должен быть вертикальным, другой горизонтальным. Для этого совсем не обязательно иметь несколько мачт. Достаточно разместить их так, на одной мачте, чтобы они были сориентированы относительно друг друга под углом в 90°. Две антенны, в этом случае будут напоминать широко известную антенну «Inverted-V».

Расчет радиуса покрытия радиосигналом в УКВ/FM диапазонах

Частоты метрового диапазона распространяются в пределах прямой видимости. Радиус действия распространения радиоволны в пределах прямой видимости без учета мощности излучения передатчика и прочих природных явлений, уменьшающих эффективность связи, выглядит так:

r = 3,57 (√h1 + √h2), км,

Рассчитаем радиусы прямой видимости при установке приемной антенны на разных высотах, где h1 — параметр, h2 = 1,5 м. Сведем их в таблицу 1.

Таблица 1

h1 (м) 10 20 25 30 35 40 50 60
r (км) 15,6 20,3 22.2 24 25.5 27,0 29,6 32

Данная формула не учитывает затухание сигнала и мощности передатчика, она говорит лишь о возможности прямой видимости с учетом идеально круглой земли.

Произведем расчет необходимого уровня радиосигнала вместе приема для длины волны 3 м.

Поскольку на трассах между передающей станцией и подвижным объектом всегда присутствуют такие явления как, отражения, рассеяния, поглощения радиосигналов различными объектами и пр, следует вводить поправки в уровень затухания сигнала, что предложил японский ученый Okumura. Среднеквадратическое отклонение для этого диапазона с городскими застройками составит 3 дБ, а при вероятности связи в 99% введем множитель 2, что составит общую поправку П в уровне радиосигнала в
П = 3 × 2 = 6 дБ.

Чувствительность приемников определяется соотношением полезного сигнала над шумами в 12 дБ, т.е. в 4 раза. Такое соотношение при качественном радиовещании не приемлемо, поэтому введем дополнительную поправку еще в 12–20 дБ, примем 14 дБ.

Итого общая поправка в уровне принимаемого сигнала с учетом затухания его по трассе и специфике приемного устройства, составит: 6+16 20дБ (в 10 раз). Тогда при чувствительности приемника в 1,5 мкВ. в месте приема должно создаваться поле с напряженностью в 15 мкВ/м.

Рассчитаем по формуле Введенского радиус действия при заданной напряженности поля в 15 мкВ/м с учетом мощности передатчика, чувствительности приемника и городских застроек:

где r — км; Р — кВт; G — дБ (=1); h — м; λ — м; Е — мВ.

В данном расчете не учитывается коэффициент усиления приемной антенны, а также затухание в фидере и полосовом фильтре.

Ответ: При мощности в 10 Вт, высоте излучения h1=27 метров и h2=1,5м, реально качественный радиоприем с радиусом в городских застройках составит 2,5-2,6 км. Если учитывать, что прием радиосигналов вашего радиопередатчика будет осуществляться на средних и высоких этажах жилых зданий, то этот радиус действия увеличится примерно в 2-3 раза. Если принимать радиосигналы на вынесенную антенну, то радиус действия будет исчисляться десятками километров.

73! UA9LBG & Радио-Вектор-Тюмень

В учебниках по физике приведены заумные формулы на тему диапазона радиоволн, которые порой не до конца понятны даже людям со специальным образованием и опытом работы. В статье постараемся разобраться с сутью, не прибегая к сложностям. Первым, кто обнаружил радиоволны, был Никола Тесла. В своем времени, где отсутствовало высокотехнологичное оборудование, Тесла не до конца понимал, что это за явление, которое он впоследствии назвал эфиром. Проводник с переменным электрическим током является началом радиоволны.

Источники радиоволн

К природным источникам радиоволн относятся астрономические объекты и молнии. Искусственным излучателем радиоволн является электрический проводник с движущимся внутри переменным электрическим током. Колебательная энергия высокочастотного генератора распространяется в окружающее пространство посредством радиоантенны. Первым рабочим источником радиоволн был радиопередатчик-радиоприёмник Попова. В этом устройстве функцию выполнял высоковольтный накопитель, подключенный на антенну − вибратор Герца. Созданные искусственным способом радиоволны применяются для стационарной и мобильной радиолокации, радиовещания, радиосвязи, спутников связи, навигационных и компьютерных систем.

Диапазон радиоволн

Применяемые в радиосвязи волны находятся в диапазоне частот 30 кГц − 3000 ГГц. Исходя из длины и частоты волны, особенностей распространения, диапазон радиоволн подразделяется на 10 поддиапазонов:

  1. СДВ - сверхдлинные.
  2. ДВ - длинные.
  3. СВ - средние.
  4. КВ - короткие.
  5. УКВ - ультракороткие.
  6. МВ - метровые.
  7. ДМВ - дециметровые.
  8. СМВ - сантиметровые.
  9. ММВ - миллиметровые.
  10. СММВ - субмиллиметровые

Диапазон частот радиоволн

Спектр радиоволн условно поделен на участки. В зависимости от частоты и длины радиоволны подразделяются на 12 поддиапазонов. Диапазон частот радиоволн взаимосвязан с частотой переменного тока сигнала. радиоволн в международном регламенте радиосвязи представлены 12 наименованиями:


При увеличении частоты радиоволны ее длина уменьшается, при уменьшении частоты радиоволны - увеличивается. Распространение в зависимости от своей длины - это важнейшее свойство радиоволны.

Распространение радиоволн 300 МГц − 300 ГГц называют сверхвысокими СВЧ вследствие их довольно высокой частоты. Даже поддиапазоны очень обширны, поэтому они, в свою очередь, поделены на промежутки, в которые входят определенные диапазоны телевизионные и радиовещательные, для морской и космической связи, наземной и авиационной, для радиолокации и радионавигации, для передачи данных медицины и так далее. Несмотря на то что весь диапазон радиоволн разбит на области, обозначенные границы между ними являются условными. Участки следуют друг за другом непрерывно, переходя один в другой, а иногда и перекрываются.

Особенности распространения радиоволны

Распространение радиоволн - это передача энергии переменным электромагнитным полем из одного участка пространства в другой. В вакууме радиоволна распространяются со При воздействии окружающей среды на радиоволны распространение радиоволн может быть затруднено. Это проявляется в искажении сигналов, изменении направления распространения, замедлении фазовой и групповой скоростях.

Каждая из разновидностей волн применяется по-разному. Длинные лучше могут обходить преграды. Это означает, что диапазон радиоволн может распространяться по плоскости земли и воды. Применение длинных волн широко распространено в подводных и морских суднах, что позволяет быть на связи в любой точке местонахождения в море. На в шестьсот метров с частотой пятьсот килогерц настроены приемники всех маяков и спасательные станций.

Распространение радиоволн в различных диапазонах зависит от их частоты. Чем меньше длина и выше частота, тем прямее будет путь волны. Соответственно, чем меньше ее частота и больше длина, тем она более способна огибать преграды. Каждый диапазон длин радиоволн обладает своими особенностями распространения, однако на границе соседних диапазонов резкого изменения отличительных признаков не наблюдается.

Характеристика распространения

Сверхдлинные и длинные волны огибают поверхность планеты, распространяясь поверхностными лучами на тысячи километров.

Средние волны подвержены более сильному поглощению, поэтому способны преодолевать расстояние лишь 500-1500 километров. При уплотнении ионосферы в данном диапазоне возможна передача сигнала пространственным лучом, который обеспечивает связь на несколько тысяч километров.

Короткие волны распространяются лишь на близкие расстояния вследствие поглощения их энергии поверхностью планеты. Пространственные же способны многократно отражаться от земной поверхности и ионосферы, преодолевать большие расстояния, осуществляя передачу информации.

Сверхкороткие способны передавать большой объем информации. Радиоволны этого диапазона проникают сквозь ионосферу в космос, поэтому для целей наземной связи практически непригодны. Поверхностные волны этих диапазонов излучаются прямолинейно, не огибая поверхность планеты.

В оптических диапазонах возможна передача гигантских объемов информации. Чаще всего для связи используется третий диапазон оптических волн. В атмосфере Земли они подвержены затуханию, поэтому в реальности передают сигнал на расстояние до 5 км. Зато использование подобных систем связи избавляет от необходимости получать разрешения от инспекций по электросвязи.

Принцип модуляции

Для того чтобы передать информацию, радиоволну нужно модулировать сигналом. Передатчик испускает модулированные радиоволны, то есть измененные. Короткие, средние и длинные волны имеют амплитудную модуляцию, поэтому они обозначаются как АМ. Перед модуляцией несущая волна движется с постоянной амплитудой. Амплитудная модуляция для передачи изменяет ее по амплитуде, соответственно напряжения сигнала. Амплитуда радиоволны изменяется прямо пропорционально напряжению сигнала. Ультракороткие волны имеют частотную модуляцию, поэтому они обозначаются как ЧМ. накладывает дополнительную частоту, которая несет информацию. Для передачи сигнала на расстояние его нужно промодулировать более высокочастотным сигналом. Для принятия сигнала нужно отделить его от поднесущей волны. При частотной модуляции помех создается меньше, однако радиостанция вынуждена вещать на УКВ.

Факторы, влияющие на качество и эффективность радиоволн

На качество и эффективность приема радиоволн влияет метод направленного излучения. Примером может послужить спутниковая антенна, которая направляет излучение в точку нахождения установленного приемного датчика. Этот метод позволил существенно продвинуться в области радиоастрономии и сделать множество открытий в науке. Он открыл возможности создания спутникового вещания, беспроводным методом и многое другое. Выяснилось, что радиоволны способны излучать Солнце, многие планеты, находящиеся вне нашей Солнечной системы, а также космические туманности и некоторые звезды. Предполагается, что за пределами нашей галактики существуют объекты, обладающие мощными радиоизлучениями.

На дальность радиоволны, распространение радиоволн оказывают влияние не только солнечное излучение, но и метеоусловия. Так, метровые волны, по сути, не зависят от метеоусловий. А дальность распространения сантиметровых сильно зависит от метеоусловий. Происходит из-за того, что водной среде во время дождя или при повышенном уровне влажности в воздухе короткие волны рассеиваются или поглощаются.

Также на их качество влияют и препятствия, оказывающиеся на пути. В такие моменты происходит замирание сигнала, при этом значительно ухудшается слышимость или вообще пропадает на несколько мгновений и более. Примером может послужить реакция телевизора на пролетающий самолет, когда мигает изображение и появляются белые полосы. Это происходит за счет того, что волна отражается от самолета и проходит мимо антенны телевизора. Такие явления с телевизорами и радиопередатчиками чаще происходят в городах, поскольку диапазон радиоволн отражается на зданиях, высотных башнях, увеличивая путь волны.

Факторы, влияющие на распространение радиоволн

Средой распространения радиоволн может быть как естественная трасса, так и искусственная. Естественной трассой является земная поверхность, атмосфера или космическое пространство. Такая среда не поддается управлению, что весьма важно для организации радиосвязи. Пути распространения радиоволн по естественным трассам имеют вид:

(РИСУНОК 12).

Радиоволны (1) распространяются в непосредственной близости Земли называют земными. Наиболее заметное влияние на распространение радиоволн в атмосфере оказывают тропосфера и ионосфера. Распространение тропосферных волн (2) в тропосфере происходит вследствие рассеяния и отражения от неоднородностей тропосферы радиоволны (3) распространяются путем отражения от ионосферы, или рассеяния в ней называют ионосферными. Радиоволны 4,5 используются для радиолиний Земля-космос, космос-космос и не имеют специального названия. В свободном пространстве радиоволна обладает поперечной структурой, т.е. входящие в ее состав взаимосвязанные электрическое и магнитные поля перпендикулярны друг другу и направлению распространения. На рис.13 вектор E характеризует в некоторый момент времени направление электрического поля волны, вектор H-магнитного поля, вектор П-направление распространения э.м волны. Расположение вектора Е в пространстве характеризует поляризацию радиоволны. В зависимости от изменения направления вектора поляризация может быть линейной, круговой, эллиптической. При линейной поляризации вектор Е в процессе распространения остается параллельным самому себе, периодически меняясь по величине и направлению. Математический закон изменения вектора при условии, что в прямоугольной системе координат он изменяется в плоскости проходящей через ось Z, можно записать: Ez=Emcos(?t-kz) (1) или в комплексной форме: Ez=Em*(e**j)*cos(?t-kz) (2), где?=2πƒ-κруговая частота, k=2π/λ – пространственная частота или волновой коэффициент. В общем случае величина k имеет смысл вектора и характеризует направление распространения волны. Закон изменения вектора H записывается аналогично в силу того, что только при этом условии возможно распространение радиоволн. В случае распространения линейно поляризованной волны вблизи раздела 2х сред различают вертикальную поляризацию если вектор E лежит в плоскости падения волны и горизонтальную, если вектор E параллелен границе раздела. Понятие поляризации относительное, в общем случае рассматривают волну поляризованную произвольно относительно границ раздела. В этом случае вектор Е раскладывают на две составляющие, одна из которых будет соответствовать вертикальной поляризации, а вторая – горизонтальной. При круговой поляризации вектор Е оставаясь постоянным по величине, вращается таким образом, что его конец описывает окружность. При эллиптической поляризации вектор Е меняется во времени по направлению и величине что его конец описывает эллипс.

Поляризация радиоволн определяется типом передающей антенны и физическими свойствами среды, в которой происходит распространение радиоволн. Только в космическом пространстве радиоволны распространяются как в свободном пространстве. В ином случае условие распространения определяется электрическими свойствами Земли и атмосферы, а также рельефом местности. Земная поверхность оказывает существенное влияние на распространение земных радиоволн. Ее элементарные свойства характеризуются в основном двумя параметрами: диэлектрической проницаемостью? и проводимостью?. Для земной поверхности однородной по глубине характерно постоянство параметров? и? во всем диапазоне радиоволн длиннее метровых. На дм и более коротких волнах? уменьшается, а? увеличивается с увеличением частоты. Наибольшее значение? и? имеют жидкие среды, а сухая почва, лед, снег, растительность имеют относительно малые значения? и?. Поэтому в зависимости от частоты радиоволн свойства земной поверхности меняются. Например для см диапазона морская вода считается диэлектриком, а влажная почва может рассматриваться как диэлектрик для метровых и более коротких волн. Параметры ε и γ определяют степень поглощения энергии радиоволны при распространении над земной поверхностью количественно потери энергии описываются коэффициентом поглощения α≈6πγ/√(ε). (3)

Физические потери обусловлены переходом энергии радиоволны в тепловую энергию движения молекул среды распространения. При распространении радиоволны в морской воде и влажной почве на низких частотах с повышением частоты коэффициент поглощения возрастает, на высоких частотах он перестает изменяться, как это имеет место в диэлектрике. Если э.м. волна падает на гладкую поверхность Земли, то она частично отражается от границы раздела сред и частично переходит в глубь второй среды. Поэтому в атмосфере имеются падающие и отраженные волны, а во второй среде – преломленная волна. При отражении волн может меняться ее поляризация, а преломленная часть волны поглощается средой. Отражение радиоволн от ровной плоской поверхности подчиняется закону геометрической оптики. Если поверхность земли не ровная, то радиоволны отражаются в различных направлениях, в том числе и в обратном. Рассеянный сигнал может иметь помимо составляющей той же поляризации, что и падающая волна составляющую ортогональную поляризацию. Поверхность считается ровной, если максимальная высота неровности hн удовлетворяет условию: hнλ/(8cosφ) (4). , γде?-угол падения радиоволны. Для УКВ линии, при которой связь осуществляется только на расстоянии прямой видимости поднятие антенн над поверхностью земли позволяет увеличить протяженность связи. Для СВ и ДВ увеличение протяженности радиолиний обеспечивается дифракцией радиоволн, т.е. огибанием препятствий, встречающихся на их пути. Влияние тропосферы на распространение радиоволн также, как и в случае распространения земных радиоволн в основном определяется характером изменения диэлектрической проницаемости и проводимости среды, которые в свою очередь зависят от физико-химических свойств газов, входящих в тропосферу. Относительный газовый состав тропосферы остается постоянным по всей высоте, изменяется лишь содержание водяных паров, которые зависят от метеорологических условий и убывают с высотой. При распространении в тропосфере радиоволны см-го и более коротковолнового диапазона она теряет энергию вследствие поглощения каплями воды и рассеяния в них. При прохождении радиоволн в каждой капельке воды наводятся токи поляризации, которые обуславливают потери энергии. При этом каждая капля переизлучает э.м. волны, причем равномерно во все стороны, что и приводит к рассеянию мощности радиоволны. Мм- волны испытывают добавочное поглощение в молекулах водяного пара и кислорода. При распределении радиоволн в тропосфере наблюдаются искривления траектории волны, причем степень искривления и направления волны зависят от состояния тропосферы. Это явление искривления траектории называемое рефракцией объясняется изменением диэлектрической проницаемости? и показателя преломления тропосферы с высотой. Представим тропосферу в виде тонких сферических слоев с неизменными в слое и отличающимися в разных слоях коэффициентами преломления. При прохождении радиоволны через границы слоев она будет преломляться. Если коэффициент преломления убывает с высотой, то угол преломления увеличивается, т.е. dn/dh 0, то имеет место отрицательная тропосферная рефракция и траектории радиоволн искривляются вверх от земли. При положительной тропосферной рефракции имеет место 3 частных случая: 1) нормальная рефракция 2) критическая рефракция 3) сверхрефракция Нормальная тропосферная рефракция происходит в нормальной тропосфере, параметры которой (P, t, влажность высота) соответствует некоторому среднему значению. Траектория распределения радиоволн при этом искривляется в сторону земной поверхности, что приводит к увеличению дальности радиолинии. Степень отклонения радиоволн зависит от длины волны и от состояния тропосферы. При некоторых условиях искривление такое, что радиоволна распространяется параллельно земле на постоянной высоте. Такой вид рефракции называется критической. При резком убывании коэффициента преломления с высотой происходит полное внутреннее отражение радиоволны от тропосферы, и она возвращается на землю. Это явление называется сверхрефракцией и наблюдается в диапазоне УКВ.

Рисунок 16

Когда область сверхрефракции занимает значительное расстояние над земной поверхностью УКВ может распространяться на весьма большие расстояния. Радиоволна в этом случае распространяется путем последовательного чередования 2х явлений: рефракции в тропосфере и отражения от земли. Это явление получило название распространение радиоволн в условиях тропосферного волновода. Такое волноводное распространение возможно для см и дм волн. Высота тропосферных волноводов может достигать несколько десятков метров. В тропосфере создаются и другие условия обеспечивающие дальнее распространение радиоволн. На высотах 1-3 км наблюдаются инверсионные слои, т.е. слои с резким изменением коэффициента преломления, которые могут отражать радиоволны. Толщина инверсионного слоя может колебаться от нескольких метров до ста метров. При этом коэффициент отражения имеет достаточную величину только для самых пологих лучей при малой толщине слоя по сравнению с длиной волны из этого следует что достаточная интенсивность отражений наблюдается на метровых волнах. Длинные волны отражаются слабее. Отражаясь от высоких инверсионных слоев радиоволны могут распространяться на расстояние до 200-400 км. Однако это явление, как и тропосферный волновод для создания регулярно действующей радиолинии ограничено нерегулярностью проявления. Более реальным является использование дальнего тропосферного распространения за рассеяния УКВ на неоднородностях тропосферы. Неоднородности тропосферы представляют собой области, в которых диэлектрическая проницаемость отличается от среднего значения для окружающей тропосферы. Неоднородности создают вторичное излучение, носящее многолучевой характер. Максимум переизлучения ориентирован в сторону первоначального распространения волны и лишь некоторая часть в сторону. Протяженность радиолинии в случае тропосферного рассеяния достигает 300-500 км. Такие радиолинии широко используются в настоящее время там, где нельзя установить промежуточные ретрансляционные станции (над проливами, в северных и мало населенных районах). Эти радиолинии обеспечивают хорошую надежность передачи телефонных и телеграфных сообщений. Влияние ионосферы на распространение радиоволн обуславливается двумя основными факторами - наличием неоднородностей и относительно высокой концентрацией электронов. Неоднородности ионосферы представляют собой некоторые области, электронная плотность в которых отличается от среднего значения на данной высоте. Размеры неоднородностей могут быть от нескольких метров до нескольких километров. В области D преобладают мелкие неоднородности размером до десятков метров, в слое Е до 200-300 м, а в слое F до нескольких километров. Хотя неоднородности ионосферы постоянно меняются, тем не менее они используются радиосвязи на метровых волнах на дальности 1-2 тыс. км. Наличие в ионосфере электронов и ионов определяет величину диэлектрической проницаемости, от которой зависит затухания ионосферных волн. Диэлектрическая проницаемость ионизированного газа всегда 2 (5), где f- рабочая частота, Nэ – электронная плотность. Из формулы (5) видно, что при некотором значении электронной плотности диэлектрическая проницаемость может стать равной 0. Частота f 0 при которой ε=0 называется собственной частотой ионизированного газа. В этом случае формула (5) имеет вид:
(6). При f (7). Из формулы (7) видно что, каждой частоте соответствует своя фазовая скорость. Эта скорость > скорости света в свободном пространстве. Таким образом дисперсия волн проявляется при одновременном распространении нескольких монохроматических волн различных частот, что практически всегда имеет место. Спектральная составляющая радиосигнала в диспергирующей среде распространяется с разными фазовыми скоростями, что приводит к искажению сигнала. Групповая скорость – это скорость распространения максимума огибающей сигнала. Для ионизированного газа групповая скорость Uгр распространения волны в диспергирующей среде определяется выражением:
(8). Γрупповая и фазовая скорости связаны соотношением: Uгр*Uф=с 2 (9) Т.о. в ионизированном газе радиосигналы распространяются со скоростью меньшей скорости света. Очевидно, что при распространении в ионосфере наибольшее искажение будут испытывать широкополосные сигналы, к которым относятся короткие импульсы.

Импульс 1 после прохождения через ионосферу приобретает форму 2. При распространении через ионосферу искажение вследствие дисперсии претерпевают импульсы длительностью в несколько секунд. А длительные телеграфные импульсы из-за дисперсии практически не искажаются. При распространении радиоволны через ионосферу ее траектория искривляется, при определенной диэлектрической проницаемости, электронной плотности, угле падения волны, ее рабочей частоте радиосигнал может отразиться от ионосферы. При этом угол падения Θ должен быть равен или превышать некоторый критический угол Θкр. Отражение радиоволн возможно и при нормальном падении на ионосферу и происходит оно на той высоте, где рабочая частота равна собственной частоте ионизированного газа. Чем больше электронная плотность, тем для более высоких частот выполняется условие отражения. Максимальная частота, при которой радиоволна отражается в случае вертикального падения на ионосферу, называется критической частотой f КР. Если рабочая частота больше критической, то при нормальном падении на ионосферу отражения не происходит и волна уходит в космическое пространство. Во время солнечных вспышек возникают ионосферные магнитные бури ухудшающие УКВ и КВ связь. Т.о. параметры тропосферы и ионосферы флуктуируют во времени. Это приводит к случайным изменениям амплитуды и фазы радиосигнала и вызывает их искажение. Флуктуация амплитуды сигнала называется замиранием.

Распространение средних волн (СВ)

СВ имеют =100-1000 м и могут распространяться как земными, так и ионосферными волнами. Земные радиоволны (РВ) СВ-диап-на испытывают значительные поглощения в полупроводящей поверхности Земли, что ограничивает их распространение расстоянием 500-700 км. Ионосферные РВ СВ-диап-на могут распространятся на гораздо большие расстояния, однако это имеет место в ночное время суток. Днём распространение СВ происходит практически только земной волной, т.к. ионосферная волна поглощается в слое D и быстро затухает. В ночное время слой D исчезает и СВ распространяются путём отражения от слоя Е ионосферы. Т.о. в диап-не СВ на некотором расстоянии от передатчика возможен одновременный приход земной и ионосферной волн (ИВ).

Вследствие того, что длина пути ИВ меняется по случайному закону при изменении электронной плотности ионосферы изменяется разность фаз волн, приходящих в некоторую точку приёма В. Если разность фаз земной и ИВ =0, то сигнал максимален, а если =180 о, то минимален. Такое изменение напряжённости поля, т.е. сигнала, называется ближним замиранием поля.

Возможен и другой вид замирания, так называемое дальнее замирание поля. Оно возникает в случае прихода в некоторую точку С (рис.18) ИВ путём одного (кривая 3) и двух (кривая 2) отражений от ионосферы. Изменение разности фаз этих двух волн так же приводит к колебаниям напряжённости эл. поля. Замирания тем глубже и чаще, чем короче  . Средняя длительность замираний в диапазоне СВ изменяется в пределах от 1с до 10-ков секунд.

Глубокие замирания в диап-не СВ сильно затрудняют приём передаваемой по радиолинии информации. Для борьбы с замираниями на передающей стороне радиолинии применяют специальные антенны, у которых максимум излучения прижат к земной поверхности. В этом случае зона ближних замираний удаляется от передатчика, а дальнее замирание вообще не возникнет, т.к. волна, пришедшая путём двух отражений будет сильно ослаблена. В радиоприёмных устройствах для борьбы с замираниями применяется автоматическая регулировка усиления (АРУ), которая обеспечивает поддержание постоянного уровня сигнала на выходе несмотря на значит. колебания напряжения на входе. Уменьшение уровня ионизации в зимние месяцы позволяет увеличить протяжённость радиолиний в СВ-диап-не зимой.

СВ находят многообразное применение для построения радиосвязи на относительно небольшие расстояния(до 1000 км). На СВ работают радиовещательные станции. В бортовых устройствах СВ используются для радиосвязи и радионавигации.

Распространение коротких волн (КВ)

К КВ относятся РВ с  =(10-100)м. Они могут распространяться как в виде земных (ЗВ), так и ионосферных волн (ИВ). Вследствие сильного поглощения в земн. поверхности и плохих условий дифракции земные РВ КВ диап-на распространяются на расстояния до 100 км. Над морем ЗВ испытывает меньшее поглощение, поэтому дальность КВ радиосвязи ув-ся до нескольких сот км. Если передающие и приёмные антенны поднять над земной поверхностью, поглощение ЗВ уменьшается, а дальность действия радиолинии будет доходить до 1000 км. Это имеет место, например, при радиосвязи между самолётами или между самолётом и землёй. Распространение КВ ионосферной волной происходит путём многократного последовательного отражения от слоя F ионосферы и земной поверхности. КВ не испытывают заметного поглощения при пересечении слоёв E и D, что обеспечивает возможность их распространения на сколь угодно большие расстояния. Для этого требуются радиопередатчики сравнительно небольшой мощности, что является ценной особ-тью КВ-диап-на. Еще одной особенностью этого диап-на является возможность создания направленного излучения РВ, что позволяет уменьшить излучение вдоль земной поверхности и, следовательно, уменьшить потери энергии.

Для связи ионосферной волной в КВ-диапазоне необходимо вып-е двух условий: 1.) волны должны отражаться от ионосферы (И); 2) они не должны сильно поглощаться в слоях И.

Эти условия влияют, прежде всего, на выбор рабочих частот.

Для отражения волны необходимо, чтобы электронная плотность И. была достаточной. Рабочая частота f  , при которой волны отразятся от ионосферы при заданной электронной плотности N Э и угле падения  0 равна:

(10)

Из этого условия выбирается максимальная применимая частота (МПЧ), являющаяся верхней границей рабочего диапазона. Нижняя граница рабочего диапазона определяется степенью поглощения КВ в И.. В диап-не КВ уменьшение поглощения происходит с повышением частоты. Наименьшая применимая частота (НПЧ) определяется из условия получения в некоторой точке пространства достаточной для приёма напряжённости ЭМ поля при данной мощности передатчика. Электронная плотность И. меняется в течение суток, поэтому днём рабочий диапазон волн 10-25м, ночью 35-100м. Необходимость правильного выбора длины волны усложняет организацию радиосвязи.

Для КВ радиолиний характерна ещё одна особенность – наличие так называемой зоны молчания. Зоной молчания (ЗМ) называют кольцевую область вокруг передатчика, в пределах которой невозможен приём РВ. Наличие ЗМ объясняется тем, что земные радиоволны 1 быстро затухают, а ИВ 2 приходят в некоторую точку земной поверхности на значительном удалении от радиопередатчика, т.к. для ИВ, падающих под малыми углами на И. не выполняется условие отражения (10) и они (рис. 19) уходят в космическое пространство. Пределы зоны молчания зависят от рабочей длины волны и уровня электронной плотности. Днём при связи на волнах в 10-25м ЗМ достигает 1000км, а ночью при связи на волнах 35-100м ширина ЗМ уменьшается до нескольких сот км. С увеличением мощности передатчика ЗМ так же уменьшается.

При распространении КВ, так же, как и в средневолновом диапазоне наблюдается явление случайного изменения во времени уровня сигнала, т.е. замирание. Сущ-ют замирания быстрые и медленные.

РИСУНОК 20

Быстрые замирания являются следствием многолучевого распространения РВ (рис 20а). Прежде всего причиной замираний служит приход в точку приёма РВ претерпевших одно и двукратное отражение от И.. Радиоволны 2 и 3 проходят разные пути, поэтому их фазы неодинаковы. Кроме того, изменение электронной плотности И. приводит к изменению длины пути каждой волны. Такие изменения происходят непрерывно, поэтому колебание напряж-ти эл. поля в диап-не КВ являются частыми и глубокими. Замирания радиосигналов вызываются также рассеянием РВ на неоднородностях И.(рис 20б) и интерференции рассеянных волн. ИВ-на КВ-диап-на под действием м. поля земли распадается на две составляющие – обыкновенную и необыкновенную, распространяющиеся с разными фазовыми скоростями (рис 20в). Интерференция составляющих магниторасщеплённой волны также приводит к замираниям. При отражениях от И. наблюдается также поворот плоскости поляризации волны. Если приёмная антенна принимает волны одной поляризации, то случайные изменения поляризации РВ-ны приведет к колебаниям уровня входящего сигнала. Все указанные причины замирания сигнала как правило действуют одновременно. Изменение поглощения РВ в И. также вызывает замирание, по времени проявления они медленнее.

Для борьбы с замираниями применяют направленные антенны, организуют приём радиоволн на разнесённые антенны, т.к. величина разноса порядка 10 обеспечивает надёжный приём. Эффективным является разнесение антенн по поляризации, т.е. приём РВ на две антенны, имеющие взаимно перпендикулярную поляризацию. При благоприятных условиях распространения КВ могут огибать земной шар один или несколько раз.

Тогда в точке приёма помимо основного сигнала с некоторым опозданием (0.1с) возможно появление такого же сигнала. Это явление, называемое радиоэхо ухудшает качество приёма радиосигналов. КВ нашли широкое и весьма многообразное применение прежде всего в организации дальней связи для радионавигации и радиовещания, в целях радиолокации для загоризонтного обнаружения объектов.

Распространение УКВ

К УКВ относят сравнительно большой диапазон волн =10-0.001м. Диапазон УКВ делят на поддиапазоны метровых (МВ), дециметровых (СМ), сантиметровых (СМ) и миллиметровых (ММ) волн. Каждый из поддиапазонов имеет свои особенности распространения, однако существуют общеосновные положения, свойственные всему диап-ну УКВ. Условия распространения УКВ определяются прежде всего свойствами трассы. УКВ слабо дифрагируют вокруг выпуклой поверхности Земли и крупных неровностей на ней и по этой причине распространяются на расстояния лишь незначительно превышающие дальность прямой видимости. Для того чтобы увеличить дальность УКВ-связи и уменьшить влияние окружающих антенну неровностей радиолинии стремятся поднять над земной поверхностью по возможности выше. Дальность действия радиолинии при этом с учётом атмосферной рефракции, определяется формулой

, (11)

где h 1 , h 2 - высота поднятия антенн в метрах, D – дальность радиолинии в км. Если протяжённость УКВ радиолинии много меньше предельно возможной дальности прямой видимости, то сферичность Земли, рефракция в тропосфере не влияют на распространение РВ. Для подобных радиолиний характерны большая устойчивость и неизменность уровня радиосигнала во времени, если передатчик и приёмник стационарные. Если хотя бы один из абонентов УКВ радиолинии является подвижным объектом, то уровень радиосигнала меняется во времени вследствие изменении угла наблюдения при движении объекта и изрезанности (?) зоны излучения стационарной передающей антенны.

Если протяжённость УКВ радиолинии превышает пределы прямой видимости, то на качество её работы влияет сферичность Земли, явление рефракции, а также метеорологические условия. Сферичность Земли оказывает заметное ослабляющее действие, а тропосферная рефракция большей частью улучшает условия приёма. При нормальной тропосферной рефракции протяж-ть УКВ радиолинии может превышать пределы прямой видимости на 15. ДЛЯ наземных радиолиний с низко расположенными антеннами максимальная дальность распространения УКВ не превышает нескольких км. С антеннами, поднятыми на высоту порядка 20-25м максимальная дальность составляет 40-60 км. Для самолётов, летящих на средних высотах она равна 300-400 км. При распространении УКВ над пересечённой местностью препятствия ослабляют сигналы в том случае, если они перекрывают линию прямой видимости между антеннами приёмо-передающих устройств.

Вместе с тем, на трассах УКВ в горных условиях наблюдается явление улучшения распространения РВ. Например, на трассах протяжённостью 100-150 км проходящих через горы высотой 1-2 км наблюдается явление усиления препятствием. Это явление заключается в том, что интенсивность ЭМ поля радиоволны при некотором удалении за препятствие оказывается больше, чем в случае распространения без препятствия. Объясняется это тем, что вершина горы служит естественным пассивным ретранслятором.

Поле, возбуждающее вершину горы складывается из прямой волны 1 и отражённой волны 2. Волны дифрагируют на острой вершине и распространяются в область за гору. К месту расположения приёмной антенны А2 приходят волны 3 и 4, сумма которых значительно превышает уровень сигнала в этой точке пространства при распространении РВ без препятствия. Явление усиления препятствием экономически выгодно и позволяет организовать радиолинию в горах без ретрансляционной станции.

Распространение УКВ на большие расстояния (до 200-1000 км) возможно путём рассеяния на неоднородностях тропосферы, которые действуют как вторичные излучатели. Поле, создаваемое вблизи земной поверхности есть результат интерференции полей, переизлучённых большим числом неоднородностей. На неоднородностях тропосферы хорошо рассеиваются волны см. и дм. диап-нов. Волны метрового диап-на переизлучаются неоднородностями ионосферы.

Максимальная протяжённость радиолинии, использующей ионосферные волны метрового диап-на достигает 2000-2300 км. Такая радиосвязь имеет большое преим-во перед коротковолновыми линиями связи в возможности круглосуточной работы на одной частоте без заметных нарушений связи.

Сверхдальняя связь на УКВ может быть основана на использовании явления сверхрефракции в тропосфере. Если область сверхрефракции занимает значительный объём над земной поверхностью, то при этом обеспечивается распространение УКВ на большие расстояния в условиях, так называемого, тропосферного волновода. Такая связь имеет недостатки: 1) приём радиоволн возможен, если приёмник и передатчик находятся в пределах волновода; 2) нерегулярное появление волноводов не может обеспечить устойчивую связь на больших расстояниях.

Явление сверхрефракции имеет и негативную сторону. Оно может служить причиной взаимных помех, создаваемых станциями, работающими в см-ровом диап-не, а также помех радиолокационным станциям обнаружения воздушных объектов.

УКВ широко применяются на космических радиолиниях, подразделяющихся на виды Земля-космос и космос-космос. Межпланетная плазма оказывает слабое поглощающее или рассеивающее воздействие на радиоволны. На р/линии Земля-космос решающее значение имеет ослабление сигналов из-за большой протяжённости трассы и поглощения в атмосфере Земли. Для космических систем связи оптимальными являются волны длиной от 3 до 10 см.

В современных линиях радиосвязи УКВ занимают особое место, т.к. обладают рядом преимуществ по сравнению с РВ-нами других диап-нов:

1.Диапазон УКВ занимает очень широкий спектр частот, что позволяет разместить в нём большое количество одновременно работающих без взаимных помех радиосредств, а также маневрировать их рабочей длиной волны.

2.В диап-не УКВ возможно создание широкополосных радиолиний, таких как телевизионные линии или широкополосные радиолинии с ЧМ.

3.Применение УКВ позволяет сравнительно легко осуществлять остронаправленное излучение и приём радиоволн с помощью антенн относит-но небольших размеров.

4.Радиоприём на УКВ в меньшей степени подвержен воздействию атмосферных и промышленных помех.

5.Ограничение дальности распространения УКВ обеспечивает относительную скрытность передачи информации.

МВ и ДМВ используют для передачи ТВ изображений, для радиосвязи самолётов между собой и с наземными пунктами. См-ровые волны прим-ся для линий связи широкого назнач-я, для такой же связи применяются и мм-ровые волны.

В данной статье расскажем вам про радиоволны и свойства их распространения.

Многие люди, не обладая элементарными понятиями о видах энергии, их свойствах, часто рассуждают о способах беспроводной передачи энергии на расстояния. Другие, не зная, как распространяются радиоволны, изготавливают антенны к своим радиопередатчикам и радиоприемникам, пытаясь добиться максимальных характеристик передачи и приема, но у них ничего не получается. Одни читают умные книги, а другие основываются на опыте, или совете малограмотного товарища. Для того, чтобы развеять хотя бы часть заблуждений и дать представление об электромагнитных волнах и как их виде – радиоволнах посвящена эта статья.

Как обычно, я не буду расписывать формул Максвелла, Фарадея и других известных деятелей науки. Их в огромном количестве имеется в учебниках физики, читая которые, даже я – имеющий образование и опыт работы в радиоэлектронике не понимаю, почему в этих учебниках приводятся заумные формулы, а простейшая, имеющая полезное практическое значение информация отсутствует? Ведь на следующий день, или неделю после окончания школы, ученик эти формулы не вспомнит, а простых понятий, как не знал, так и знать не будет.

Начнём с того, что великий изобретатель-практик электрических машин Никола Тесла активно использовал в своих экспериментах электромагнитные колебания, про которые раньше никто не знал, и как мы знаем теперь из учебников физики средней школы — порождают вид электромагнитных волн — радиоволны. Но повторюсь, во времена Теслы о существовании электромагнитных волн никто не знал. Интуитивно, путём наблюдений, Тесла понимал, что в результате его экспериментов в окружающем пространстве появляется какой-то вид энергии. Но в те времена не существовало такой науки и оборудования позволяющего раскрыть понятие электромагнитных волн. Поэтому, это явление рассматривалось как философская категория, которую Тесла называл — эфиром .

Нынче рассуждают, что «эфир» и электромагнитные волны это разные понятия. Они совершенно не правы лишь потому, что абсолютно все изобретения Теслы основаны на использовании обыкновенного переменного электрического тока и электромагнитных полей, которые в свою очередь и порождают не «эфир», а самые обыкновенные электромагнитные волны в радиочастотном диапазоне. Именно то, что в настоящее время называется электромагнитными волнами, в те времена Никола Тесла называл эфиром. Других вариантов объяснений быть не может. Можно долго рассуждать о том, что это разные понятия. Например, кто то с пеной у рта пытается доказать что скорость распространения эфира больше скорости света, а доказательная база отсутствует. С помощью какого эксперимента Никола Тесла мог измерить скорость эфира? Нигде такой информации нет. Вывод один, он её не измерял, а лишь предполагал. Вы скажете, что эфир несёт в себе энергию? Отвечу, любая электромагнитная волна несёт в себе энергию! Мне попадались практические схемы радиоприёмников без батареек, предназначенные не для работы на наушники или динамическую головку, а для получения постоянного электрического тока «из воздуха» теми жителями мегаполисов, которые живут рядом с мощными телерадиоцентрами.

где: f – частота, λ – длина волны, с – скорость света, равная 300 000 км/сек.

Радиоволны подразделяются на несколько диапазонов:

Сверхдлинные «СДВ» – частотой 3 – 30 кГц, с длиной волны 100 — 10 км;

Длинные «ДВ» – частотой 30 – 300 кГц, с длиной волны 10 — 1 км;

Средние «СВ» – частотой 300 – 3000 кГц, с длиной волны 1000 — 100 метров;

Короткие «КВ» – частотой 3 – 30 МГц, с длиной волны 100 — 10 метров;

Ультракороткие «УКВ» , включающие:

— метровые «МВ» – частотой 30 – 300 МГц, с длиной волны 10 — 1 метра;

— дециметровые «ДМВ» – частотой 300 – 3000 МГц, с длиной волны 10 — 1 дм;

— сантиметровые «СМВ» – частотой 3 – 30 ГГц, с длиной волны 10 — 1 см;

— миллиметровые «ММВ» – частотой 30 – 300 ГГц, с длиной волны 10 — 1 мм;

— субмиллиметровые «СММВ» – частотой 300 – 6000 ГГц, с длиной волны 1 – 0,05 мм;

Диапазоны от дециметровых, до миллиметровых волн, из-за их очень высокой частоты называют сверхвысокими частотами «СВЧ» .

Естественно все перечисленные диапазоны радиоволн, как отечественные, так и буржуйские могут подразделяться на поддиапазоны.

Вспомните практическую важность поляризации ЭМВ — если радиопередатчик и радиоприемник настроены на одну и ту же частоту, но имеют разную поляризацию, например у передатчика вертикальная, а у приемника – горизонтальная, то радиосвязь будет плохой. К этому стоит добавить диаграмму направленности штыревой антенны, и тогда на примере двух радиотелефонов — переносных радиостанций (1 и 2) изображённых на рисунке ниже, можно сделать логическое заключение:

Если антенны радиопередатчика и радиоприемника ориентированы в пространстве относительно горизонта одинаково и диаграммы направленности антенн максимумами направлены друг на друга, то связь будет наилучшей. Если не выполняется одно из указанных условий, то связи либо не будет, либо она будет плохой.

На дальность радиосвязи также влияет ещё один параметр – толщина элементов вибратора, чем она больше, тем антенна широкополоснее – диапазон хорошо принимаемых частот шире, но уровень сигнала практически на всех частотах уменьшается. Это связано с тем, что дипольная антенна – это тот же колебательный контур, а при расширении полосы частот АЧХ резонанса, амплитуда резонанса уменьшается. Поэтому не удивляйтесь, что телевизионная антенна, сделанная из пивных алюминиевых банок в городе, где уровень сигнала телевизионной вышки большой, принимает телевизионный сигнал разных каналов не хуже, а зачастую лучше сложной профессиональной антенны.

Хорошие профессиональные радиоантенны обладают показателем – коэффициентом усиления антенны . Ведь обычный полуволновой вибратор не усиливает сигнал, его действие избирательно – на определённой частоте, в определённых направлениях и определённой поляризации. Чтобы в приемнике было меньше помех, увеличить дальность приема-передачи, одновременно при этом сузить диаграмму направленности антенны (общепринятое название — ДНА), простой полуволновой вибратор не годится. Антенну усложняют.

Ранее, я писал о влиянии различных препятствий — их отражательном свойстве. Если препятствие по своим размерам не соизмеримо (на порядок меньше) с длиной радиоволны, тогда это не является для радиосигнала препятствием, оно никак на него не влияет. Если препятствие находится в плоскости параллельной электрической волне и больше длины волны, тогда это препятствие отражает радиоволну. Если препятствие по протяженности кратно (равно четверти, половине или целой) длине волны, сориентировано параллельно электрической волне и перпендикулярно направлению распространения волны, тогда это препятствие действует как резонансный колебательный контур на целой длине волны или её гармониках, и имеет наибольшие отражательные свойства.

Именно эти описанные выше свойства и используются в сложных антеннах. Так, один из вариантов улучшения приемных свойств антенны является установка дополнительного рефлектора (отражателя), принцип действия которого основывается на отражении радиоволны и синфазного сложения двух сигналов – от телецентра (ТЦ) и от рефлектора. Диаграмма направленности при этом сужается и вытягивается. На рисунке изображена антенна, состоящая из петлевого полуволнового вибратора(1) и рефлектора(2). Длина вибратора (А) этой телевизионной антенны выбирается равной половине длины волны среднего телевизионного канала, помноженную на коэффициент укорочения. Длина рефлектора (Б) выбирается равной половине длины волны минимального телевизионного канала (с максимальной длиной волны). Расстояние между вибратором и рефлектором (С) выбирается таким, чтобы происходило синфазное сложение прямого и отражённого сигнала – половине длины волны.

Следующий способ дальнейшего усиления приемного сигнала путём сужения и вытягивания ДНА – добавление пассивного вибратора – директора . Принцип действия всё на том же синфазном сложении. Диаграмма направленности при этом ещё сильнее сужается и вытягивается. На рисунке изображена антенна «волновой канал» , состоящая из рефлектора (1), петлевого полуволнового вибратора (2) и одного директора (3). Дальнейшее добавление директоров ещё сильнее сужает и вытягивает диаграмму направленности. Длина директоров (В) выбирается чуть меньше длины активного вибратора. Для увеличения коэффициента усиления антенны и её широкополосности, перед активным вибратором добавляются директоры с постепенным уменьшением их длины. Обратите внимание, что длина активного вибратора равна половине средней длине волны принимаемого сигнала, длина рефлектора – больше половины длины волны, а длина директора – меньше половины длины волны. Расстояния между элементами выбирается также около половины длины волны.

В профессиональной технике часто применяется способ сужения ДНА и повышения усилительных свойств антенны – фазированная антенная решётка , в которой параллельно подключается несколько антенн (например простых диполей, или антенн типа «волновой канал»). В результате происходит сложение токов соседних каналов, и как результат – повышение мощности сигнала.

На сверхвысоких частотах в качестве вибратора антенны применяют волновод, а в качестве рефлектора применяют сплошное полотно, все точки которого равноудалены от плоскости вибратора (на одинаковом расстоянии) – параболоид вращения , или в простонародье – «тарелка». Такая антенна обладает очень узкой диаграммой направленности и высоким коэффициентом усиления антенны.

Выводы на основе распространения и сложности формирования радиоволн

Как и куда распространяются радиоволны можно рассчитать с помощью умных формул и преобразований только для идеальных условий – при отсутствии естественных препятствий. Для этого, элементы антенн, различные поверхности должны быть идеально ровные. На практике, из-за влияния многих факторов преломления и отражения, ещё ни один «учёный мозг» не смог с высокой достоверностью рассчитать распространение радиоволн в естественных природных условиях. Существуют области пространства уверенного приема и зоны радиотени – там, где прием вовсе отсутствует. Только в кино альпинисты не отвечают на вызов по радиосвязи потому, что у них заняты руки, или они сами заняты «спасением мира», на самом деле радиосвязь – дело не устойчивое и чаще альпинисты не отвечают потому, что связи просто нет – отсутствует прохождение радиоволн. Именно зависимость радиосвязи от природных явлений (дождь, низкая облачность, разряженность атмосферы и т.д.) привела к возникновению понятия «радиолюбитель» . Это сейчас понятие «радиолюбитель» – человек, который любит паять радиосхемы. Лет двадцать назад это был «связист-коротковолновик», который на изготовленном своими руками маломощном трансивере связывался с другим радиолюбителем (или по другому — радиокорреспондентом), находящимся на другой стороне Земли, за что получал «бонусы». Раньше даже проводились соревнования по радиосвязи. Нынче тоже проводятся, но с развитием техники это стало не так актуально. Среди этих радиолюбителей-связистов есть много недовольных тем, что обыкновенные «паялы», не сидящие в наушниках в поисках радиокорреспондентов для организации радиообмена, называют себя радиолюбителями.