Пдк воды хозяйственно бытового назначения кальций. Проблема наличия нефтепродуктов в воде и как с ней бороться

Владимир Хомутко

Время на чтение: 5 минут

А А

Проблема наличия нефтепродуктов в воде и как с ней бороться

К наиболее распространенным и токсически опасным веществам, которые служат источниками загрязнения природной водной среды, специалисты относят нефтепродукты (НП).

Нефть и её производные являются непостоянными смесями углеводородов предельной и непредельной группы, а также их производных разного вида. Гидрохимия условно трактует понятие «нефтепродукты», ограничиваясь только их углеводородными алифатическими, ароматическими и ациклическими фракциями, которые составляют основную и наиболее распространенную часть нефти и её компонентов, выделяемых в процессе нефтепереработки. Для обозначения содержания нефтепродуктов в воде, в международной практике существует термин Нydrocarbon Оil Index («углеводородный нефтяной индекс»).

Предельная допустимая концентрация (ПДК) в воде нефти и нефтепродуктов для культурно-бытовых и хозяйственно-питьевых объектов водопользования находится на отметке 0,3 миллиграмма на кубический дециметр, а для объектов рыбохозяйственного водопользования – 0,05 миллиграмма на кубический дециметр.

Определение нефтепродуктов, содержащихся в воде, возможно с помощью различных приборов и методов, о которых мы кратко расскажем в этой статье.

На сегодняшний момент существуют четыре основных методики определения концентрации нефти и её производных в воде, которые основаны на разных физических свойствах определяемых нефтепродуктов:

  • метод гравиметрии;
  • ИК-спектрофотометрия;
  • флуориметрический метод;
  • методика газовой хроматографии.

Методика применения того или иного способа измерения содержания нефтей и нефтепродуктов в воде, а также нормы ПДК для различных видов нефтепродуктов, регламентируется природоохранными нормативными документами федерального значения (сокращенно – ПНД Ф).

Гравиметрический метод

Его применение регулируется ПНД Ф за номером 14.1:2.116-97.

Суть его – извлечение (обезвоживание) нефтепродуктов из предоставленных для анализа проб с помощью органического растворителя, с последующим отделением от полярных соединений с помощью колоночной хроматографии на оксиде алюминия других классов соединений, после чего производится количественное определение содержания вещества в воде.

В исследованиях сточных вод этот способ применяется при концентрациях, диапазон которых составляет от 0,30 до 50,0 миллиграмм на кубический дециметр, что не позволяет определить соответствие воды нормам ПДК на объектах рыбохозяйственного водопользования.

Еще одним существенным недостатком этого способа является длительный период времени, который требуется для проведения измерений. Поэтому его не применяют при текущем технологическом контроле на производстве, а также в других случаях, когда скорость получения результатов имеет первостепенное значение.

К достоинствам этой методики специалисты относят отсутствие стандартных градуировок по образцам, которые характерны для прочих методов анализа.

Погрешность при использовании этого способа при показателе Р равном 0,95 (±δ, %) при анализе природных вод варьируется от 25-ти до 28-ми процентов, а при анализе сточных вод – от 10-ти до 35-ти.

ИК-спектрофотометрия

Применение этой методики регламентируется ПНД Ф за номером 14.1:2:4.168, а также методическими указаниями МУК 4.1.1013-01.

Суть этой методики определения содержания нефтепродуктов в воде – выделение растворенных и эмульгированных нефтяных загрязнений путем экстракции их с помощью четыреххлористого углерода, с последующим хроматографическим отделением нефтепродукта от прочих соединений органической группы, на заполненной оксидом алюминия колонке. После этого определение количества НП в воде производится по показателям интенсивности поглощения в инфракрасной области спектра C-H связей.

Инфракрасная спектроскопия на сегодняшний момент является одной из наиболее мощных аналитических методик, и широко применяется в исследованиях как прикладного, так и фундаментального характера. Её применение также возможно для нужд текущего контроля производственного процесса.

Самой популярной на сегодняшний момент методикой такого спектрального ИК-анализа является Фурье-ИК. Спектрометры, действие которых основано на этой методике, даже находящиеся в нижней и средней ценовой нише, по своим параметрам уже составляют конкуренцию таким традиционным приборам, как дифракционные спектрометры. В настоящее время их широко используют в многочисленных аналитических лабораториях.

Помимо оптики, в стандартную комплектацию таких приборов обязательно входит управляющий компьютер, который не только выполняет функцию по управлению процессом получения необходимого спектра, но и служит для оперативной обработки получаемых данных. С помощью таких ИК-спектрометров достаточно легко получить колебательный спектр соединения, представленного для анализа.

Основными преимуществами данной методики являются:

  • малые количества исходных проб анализируемой воды (от 200-т до 250-ти миллилитров);
  • высокая чувствительность методики (шаг определения – 0,02 миллиграмма на кубический дециметр, что позволяет определять соответствие результатов нормам ПДК для рыбохозяйственных водоемов).

Самым главным недостатком этого способа анализа (особенно при использовании фотоколориметрического окончания), специалисты называют высокую степень его зависимости от вида анализируемого нефтепродукта. Определение с помощью фотоколориметра требует построения отдельных калибровочных графиков для каждого типа нефтепродукта. Это связано с тем, что несоответствие эталона и анализируемого нефтепродукта значительно искажает получаемые результаты.

Этот способ применяется при концентрациях НП от 0,02 до 10 миллиграмм на кубический дециметр. Погрешность измерений при Р равном 0,95 (±δ, %) составляет от 25-ти до 50-ти процентов.

Регламентируется ПНД Ф за номером 14.1:2:4.128-98.

Суть этой методики заключается в обезвоживании нефтепродуктов с последующим их извлечение из воды с помощью гексана, затем очистки получаемого экстракта (в случае необходимости) и последующего измерения флуоресцентной интенсивности экстракта, которая возникает от оптического возбуждения. Для измерения интенсивности флуоресценции применяется анализатор жидкости марки «Флюорат-2».

К несомненным достоинствам этого метода относятся:

Ароматическим углеводородам для возбуждения и последующей регистрации флуоресцентного излучения необходимы различные условия. Специалисты отмечают зависимость спектральных изменений флуоресценции от длины волны, которой обладает возбуждающий свет. Если возбуждение происходит ближней части ультрафиолетового спектра, и уж тем более – в его видимой области, то флуоресценция проявляется только у полиядерных углеводородов.

Так как их доля – достаточно мала, и напрямую зависит от природы исследуемого нефтепродукта, возникает высокая степень зависимости получаемого аналитического сигнала от конкретного вида НП. При воздействии ультрафиолетового излучения люминесцируют только некоторые углеводороды, в основном – высокомолекулярные ароматические из группы полициклических. Причем интенсивность их излучение сильно разнится.

В связи с этим, чтобы получить достоверные результаты, нужно обязательно иметь в наличие стандартный раствор, который содержит те же люминесцирующие компоненты (причем – в таких же относительных пропорциях), что наличествуют в анализируемой пробе. Это чаще всего труднодостижимо, поэтому флуориметрический способ определения содержания в воде нефтепродуктов, который основан на регистрации интенсивности флуоресцентного излучения в видимой части спектра, для массовых анализов является непригодным.

Этот метод можно применять при концентрациях нефтепродуктов в пределах от 0,005 до 50,0 миллиграммов на кубический дециметр.

Погрешность получаемых результатов (при Р равном 0,95, (±δ, %)) составляет от 25-ти до 50-ти процентов.

Применение этой методики регулируется ГОСТ-ом за номером 31953-2012.

Эту методику применяют для определения массовой концентрации различных нефтепродуктов как в питьевой (включая расфасованную в емкости), так и в природной (как поверхностной, так и подземной) воде, а также в воде, содержащейся в источниках хозяйственно-питьевого назначения. Эффективен этот способ и при анализе сточной воды. Главное, чтобы массовая концентрация нефтепродуктов была не меньше, чем 0,02 миллиграмма на кубический дециметр.

Суть метода газовой хроматографии заключается в экстракционном извлечении НП из анализируемой пробы воды с помощью экстрагента, последующей его очистке от полярных соединений при помощи сорбента, и заключительном анализе полученного вещества на газовом хроматографе.

Результат получается после суммирования площадей хроматографических пиков выделяемых углеводородов и путем последующего расчета содержания НП в анализируемой пробе воды с помощью заранее установленной градуировочной зависимости.

С помощью газовой хроматографии не только определяют общую концентрацию нефтепродуктов в воде, но и проводят идентификацию их конкретного состава.

Газовая хроматография вообще представляет собой методику, основанную на разделении термостабильных летучих соединений. Таким требованиям соответствует примерно пять процентов от общего числа известных науке органических соединений. Однако именно они занимают 70-80 процентов от общего числа используемых человеком в производстве и быту соединений.

Роль подвижной фазы в этой методике исполняет газ-носитель (обычно инертной группы), который протекает через неподвижную фазу с гораздо большей площадью поверхности. В качестве газа-носителя подвижной фазы применяют:

  • водород;
  • азот;
  • углекислый газ;
  • гелий;
  • аргон.

Чаще всего используется наиболее доступный и недорогой азот.

Именно с помощью газа-носителя обеспечивается перенос по хроматографической колонке разделяемых компонентов. При этом этот газ не вступает во взаимодействие ни с самими разделяемыми компонентами, ни с ни с веществом неподвижной фазы.

Основные достоинства газовой хроматографии:

  • относительная простота используемого оборудования;
  • достаточно широкое поле применения;
  • возможность высокоточного определения достаточно малых концентраций газов в органических соединениях;
  • быстрота получения результатов анализа;
  • широкая палитра как используемых сорбентов, так и веществ для неподвижных фаз;
  • высокий уровень гибкости, позволяющий менять условия разделения;
  • возможность проведения химических реакций в хроматографическом детекторе или в хроматографической колонке, что значительно увеличивает охват химических соединений, подвергаемых анализу;
  • повышенная информативность в случае применения с другими инструментальными методами анализа (например, с масс-спектрометрией и Фурье-ИК-спектрометрией).

Погрешность результатов этой методики (Р равно 0,95 (±δ, %)) составляет от 25-ти до 50-ти процентов.

Стоит отметить, что только способ измерения содержания нефтепродуктов в воде с помощью газовой хроматографии стандартизован в международной организации по стандартизации, которую все мы знаем под аббревиатурой ИСО, поскольку только он дает возможность идентифицировать виды нефтяных и нефтепродуктовых загрязнений.

Вне зависимости от применяемой методики, постоянный контроль за водами, применяемыми на производстве и в бытовой сфере, жизненно необходим. По данным специалистов-экологов, в некоторых российских регионах более половины всех заболеваний так или иначе связано с качеством питьевой воды.

Большая концентрация нефтепродуктов в воде

Более того, по оценкам тех же ученых, одно только повышение качества воды для питья способно продлить жизнь на срок от пяти до семи лет. Все эти факторы говорят о значимости постоянного мониторинга состояния воды вблизи предприятий нефтяной промышленности, которые являются основными источниками загрязнений окружающей среды нефтью и её производными.

Своевременное обнаружение превышения ПДК нефтепродуктов в воде позволит избежать масштабных нарушений экосистемы, и своевременно принять необходимые меры по устранению сложившейся ситуации.

Однако, для эффективной работы ученым-экологам необходима государственная поддержка. Причем не столько в виде денежных дотаций, сколько в создании нормативной базы, регулирующей ответственность предприятий народного хозяйства за нарушение экологических норм, а также в жестком контроле за исполнением принятых нормативов.

Нормы качества питьевой воды СанПиН 2.1.4.1074-01. Питьевая вода. (ВОЗ, ЕС, USEPA).питьевой воды, расфасованной в емкости (по СанПиН 2.1.4.1116 - 02), показателей водок (по ПТР 10-12292-99 с изменениями 1,2,3), воды для производства пива и безалкогольной продукции, сетевой и подпиточной воды водогрейных котлов (по РД 24.031.120-91), питательной воды для котлов (по ГОСТ 20995-75), дистиллированной воды (по ГОСТ 6709-96), воды для электронной техники (по ОСТ 11.029.003-80, ASTM D-5127-90), для гальванических производств (по ГОСТ 9.314-90), для гемодиализа (по ГОСТ 52556-2006), воды очищенной (по ФС 42-2619-97 и EP IV 2002), воды для инъекций (по ФС 42-2620-97 и EP IV 2002), воды для полива тепличных культур.

В данном разделе приведены основные показатели нормативов качества воды для различных производств.
Вполне достоверные данные отличной и уважаемой компании в области водоочистки и водоподготовки "Альтир" из Владимира

1. Нормы качества питьевой воды СанПиН 2.1.4.1074-01. Питьевая вода. (ВОЗ, ЕС, USEPA).

Показатели СанПиН2.1.4.1074-01 ВОЗ USEPA ЕС
Ед. измерения Нормативы ПДК, не более Показатель вредности Класс опасности
Водородный показатель ед. рН в пределах 6-9 - - - 6,5-8,5 6,5-8,5
Общая минерализация(сухой остаток) мг/л 1000 (1500) - - 1000 500 1500
Жесткость общая мг-экв/л 7,0 (10) - - - - 1,2
Окисляемость перманганатная мг О2/л 5,0 - - - - 5,0
Нефтепродукты, суммарно мг/л 0,1 - - - - -
Поверхностно-активныевещества (ПАВ),анионоактивные мг/л 0,5 - - - - -
Фенольный индекс мг/л 0,25 - - - - -
Щелочность мг НСО3-/л 0,25 - - - - 30
Неорганические вещества
Алюминий (Al 3+) мг/л 0,5 с.-т. 2 0,2 0,2 0,2
Азот аммонийный мг/л 2,0 с.-т. 3 1,5 - 0,5
Асбест милл.во-локон/л - - - - 7,0 -
Барий (Ва 2+) мг/л 0,1 с.-т. 2 0,7 2,0 0,1
Берилий(Ве 2+) мг/л 0,0002 с.-т. 1 - 0,004 -
Бор (В, суммарно) мг/л 0,5 с.-т. 2 0,3 - 1,0
Ванадий (V) мг/л 0,1 с.-т. 3 0,1 - -
Висмут (Bi) мг/л 0,1 с.-т. 2 0,1 - -
Железо (Fe,суммарно) мг/л 0,3 (1,0) орг. 3 0,3 0,3 0,2
Кадмий (Cd,суммарно) мг/л 0,001 с.-т. 2 0,003 0,005 0,005
Калий (К+) мг/л - - - - - 12,0
Кальций (Са 2+) мг/л - - - - - 100,0
Кобальт (Со) мг/л 0,1 с.-т. 2 - - -
Кремний (Si) мг/л 10,0 с.-т. 2 - - -
Магний (Mg 2+) мг/л - с.-т. - - - 50,0
Марганец (Mn,суммарно) мг/л 0,1 (0,5) орг. 3 0,5 (0,1) 0,05 0,05
Медь (Сu, суммарно) мг/л 1,0 орг. 3 2,0 (1,0) 1,0-1,3 2,0
Молибден (Мо,суммарно) мг/л 0,25 с.-т. 2 0,07 - -
Мышьяк (As,суммарно) мг/л 0,05 с.-т. 2 0,01 0,05 0,01
Никель (Ni,суммарно) мг/л 0,01 с.-т. 3 - - -
Нитраты (поNO 3-) мг/л 45 с.-т. 3 50,0 44,0 50,0
Нитриты (поNO 2-) мг/л 3,0 - 2 3,0 3,5 0,5
Ртуть (Hg, суммарно) мг/л 0,0005 с.-т. 1 0,001 0,002 0,001
Свинец (Pb,суммарно) мг/л 0,03 с.-т. 2 0,01 0,015 0,01
Селен (Se, суммарно) мг/л 0,01 с.-т. 2 0,01 0,05 0,01
Серебро (Ag+) мг/л 0,05 - 2 - 0,1 0,01
Сероводород (H 2 S) мг/л 0,03 орг. 4 0,05 - -
Стронций (Sr 2+) мг/л 7,0 орг. 2 - - -
Сульфаты (SO 4 2-) мг/л 500 орг. 4 250,0 250,0 250,0
Фториды (F) для климатическихрайонов I и II мг/л 1,51,2 с.-т 22 1,5 2,0-4,0 1,5
Хлориды (Cl-) мг/л 350 орг. 4 250,0 250,0 250,0
Хром (Cr 3+) мг/л 0,5 с.-т. 3 - 0,1 (всего) -
Хром (Cr 6+) мг/л 0,05 с.-т. 3 0,05 0,05
Цианиды (CN-) мг/л 0,035 с.-т. 2 0,07 0,2 0,05
Цинк (Zn 2+) мг/л 5,0 орг. 3 3,0 5,0 5,0

с.-т. - санитарно-токсикологический
орг. - органолептический
Величина, указанная в скобках, во всех таблицах может быть установлена по указанию Главного государственного санитарного врача.

Показатели Единицы измерения Нормативы
Термотолерантные колиформные бактерии Число бактерий в 100 мл Отсутствие
Общие колиформные бактерии Число бактерий в 100 мл Отсутствие
Общее микробное число Число образующих колонии бактерий в 1 мл Не более 50
Колифаги Число бляшкообразующих единиц (БОЕ) в 100 мл Отсутствие
Споры сульфоредуцирующих клостридий Число спор в 20 мл Отсутствие
Цисты лямблий Число цист в 50 мл Отсутствие

2. Нормы качества питьевой воды, расфасованной в емкости (по СанПиН 2.1.4.1116 - 02).

СанПиН 2.1.4.1116 - 02 Питьевая вода. Гигиенические требования к качеству воды, расфасованной в емкости. Контроль качества.
Показатель Ед. изм. высшая категория Первая категория
Запах при 20 град. С балл отсутствие отсутствие
Запах при 60 град. С балл 0 1,0
Цветность градус 5,0 5,0
Мутность мг/л < 0,5 < 1,0
рН ед. 6,5 - 8,5 6,5 - 8,5
Сухой остаток мг/л 200 - 500 1000
Перманганатная окисляемость мгО 2 /л 2,0 3,0
Общая жесткость мг-экв/л 1,5 - 7,0 7,0
Железо мг/л 0,3 0,3
Марганец мг/л 0,05 0,05
Натрий мг/л 20,0 200
Бикарбонаты мг-экв/л 30 - 400 400
Сульфаты мг/л < 150 < 250
Хлориды мг/л < 150 < 250
Нитраты мг/л < 5 < 20
Нитриты мг/л 0,005 0,5
Фториды мг/л 0,6-1,2 1,5
Нефтепродукты мг/л 0,01 0,05
Аммиак мг/л 0,05 0,1
Сероводород мг/л 0,003 0,003
Кремний мг/л 10,0 10,0
Бор мг/л 0,3 0,5
Свинец мг/л 0,005 0,01
Кадмий мг/л 0,001 0,001
Никель мг/л 0,02 0,02
Ртуть мг/л 0,0002 0,0005
Данные санитарные правила не распространяются на минеральные воды (лечебные, лечебно - столовые, столовые).

3. Оптимальное значение физико-химических и микроэлементных показателей водок (по ПТР 10-12292-99 с изменениями 1,2,3)

3.1. Оптимальные значения физико-химических и микроэлементных показателей водок

Нормируемые показатели Для технологической воды с жесткостью, моль/м 3 (максимально допустимая величина)
0-0,02 0,21-0,40 0,41-0,60 0,61-0,80 0,81-1,00
Щелочность, объем соляной кислоты концентрации с (HCl) =0,1 моль/дм 3 , израсходованной на титрование 100 см 3 воды, см 3
Водородный показатель (рН)
2,5 1,5 1,0 0,4 0,3
Массовая концентрация, мг/дм 3
- кальция
- магния
- железа
- сульфатов
- хлоридов
- кремния
- гидрокарбонатов
- натрия+калия
- марганца
- алюминия
- меди
- фосфатов
- нитратов

1,6
0,5
0,15
18,0
18,0
3,0
75
60
0,06
0,10
0,10
0,10
2,5

4,0
1,0
0,12
15,0
15,0
2,5
60
50
0,06
0,06
0,06
0,10
2,5

5,0
1,5
0,10
12,0
12,0
2,0
40
50
0,06
0,06
0,06
0,10
2,5

4,0
1,2
0,04
15,0
9,0
1,2
25
25
0,06
0,06
0,06
0,10
2,5

5,0
1,5
0,02
6,0
6,0
0,6
15
12
0,06
0,06
0,06
0,10
2,5

3.2. Нижние пределы содержания микроэлементов в технологической воде для приготовления водок

Нормируемые показатели Минимально-допустимая величина
Жесткость, моль/м 3 0,01
Щелочность, объем соляной кислоты концентрации с (HCl) =0,1 моль/дм 3 , израсходованной на титрование 100 см 3 воды, см 3 0
Окисляемость, О 2 /дм 3 0,2
Водородный показатель (рН) 5,5
Массовая концентрация, мг/дм 3
- кальция 0,12
- магния 0,04
- железа 0,01
- сульфатов 2,0
- хлоридов 2,0
- кремния 0,2
- гидрокарбонатов 0

4. Нормы качества питьевой воды для производства пива и безалкогольной продукции.

Наименование Требования по ТИ 10-5031536-73-10 к воде для производства:
пива безалкогольных напитков
pH 6-6,5 3-6
Cl-, мг/л 100-150 100-150
SO 4 2- , мг/л 100-150 100-150
Mg 2+ , мг/л следы
Ca 2+ , мг/л 40-80
K ++ Na + , мг/л
Щелочность, мг-экв/л 0,5-1,5 1,0
Сухой остаток, мг/л 500 500
Нитриты, мг/л 0 следы
Нитраты, мг/л 10 10
Фосфаты, мг/л
Алюминий, мг/л 0,5 0,1
Медь, мг/л 0,5 1,0
Силикаты, мг/л 2,0 2,0
Железо, мг/л 0,1 0,2
Марганец, мг/л 0,1 0,1
Окисляемость,мг O 2 /л 2,0
Жесткость, мг-экв/л < 4 0,7
Мутность, мг/л 1,0 1,0
Цветность, град. 10 10

5. Нормы качества сетевой и подпиточной воды водогрейных котлов (по РД 24.031.120-91).

Система теплоснабжения
Показатель открытая закрытая
Температура сетевой воды, ° С
115 150 200 115 150 200
Прозрачность по шрифту, см, не менее 40 40 40 30 30 30
Карбонатная жесткость, мкг-экв/кг:
при рН не более 8,5 800/700 750/600 375/300 800/700 750/600 375/300
при рН более 8,5 Не допускается
Содержание растворенного кислорода, мкг/кг 50 30 20 50 30 20
Содержание соединений железа (в пересчете на Fe), мкг/кг 300 300/250 250/200 600/500 500/400 375/300
Значение рН при 25 ° С От 7,0 до 8,5 От 7,0 до 11,0
Свободная углекислота, мг/кг Должна отсутствовать или находиться в пределах, обеспечивающих поддержание рН не менее 7,0
Содержание нефтепродуктов, мг/кг 1,0

Примечания:

  1. В числителе указаны значения для котлов на твердом топливе, в знаменателе — на жидком и газообразном.
  2. Для тепловых сетей, в которых водогрейные котлы работают параллельно с бойлерами, имеющими латунные трубки, верхний предел рН сетевой воды не должен превышать 9,5.
  3. Содержание растворенного кислорода указано для сетевой воды; для подпиточной воды оно не должно превышать 50 мкг/кг.

6. Нормы качества питательной воды для котлов (по ГОСТ 20995-75).

Наименование показателя Норма для котлов абсолютным давлением, МПа (кгс/см 2)
до 1,4 (14) включительно 2,4 (24) 3,9 (40)
Общая жесткость, мкмоль/дм 3 (мкг-экв/дм 3) 15 * /20(15 * /20) 10 * /15(10 * /15) 5 * /10(5 * /10)
Содержание соединений железа (в пересчете на Fe), мкг/дм 3) 300 Не нормируется 100 * /200 50 * /100
Содержание соединений меди (в пересчете на Сu), мкг/дм 3 Не нормируется 10 * Не нормируется
Содержание растворенного кислорода, мкг/дм 3 30 * /50 20 * /50 20 * /30
Значение рН (при t = 25 ° С) 8,5-9,5 **
Содержание нитритов (в пересчете на NO 2 -), мкг/дм 3 Не нормируется 20
Содержание нефтепродуктов, мг/дм 3 3 3 0,5

* В числителе указаны значения для котлов, работающих на жидком топливе при локальном тепловом потоке более 350 кВт/м 2 , а в знаменателе — для котлов, работающих на других видах топлива при локальном тепловом потоке до 350 кВт/м 2 включительно.
** При наличии в системе подготовки добавочной воды промышленных и отопительных котельных фазы предварительного известкования или содоизвесткования, а также при значениях карбонатной жесткости исходной воды более 3,5 мг-экв/дм 3 и при наличии одной из фаз водоподготовки (натрий—катионирования или аммоний—натрий—катионирования) допускается повышение верхнего предела значения рН до 10,5.
При эксплуатации вакуумных деаэраторов допускается снижение нижнего предела значения рН до 7,0.

7. Нормы качества дистиллированной воды (по ГОСТ 6709-96).

Наименование показателя Норма
Массовая концентрация остатка после выпаривания, мг/дм 3 , не более 5
Массовая концентрация аммиака и аммонийных солей (NH 4), мг/дм 3 , не более 0,02
Массовая концентрация нитратов (NО 3), мг/дм 3 , не более 0,2
Массовая концентрация сульфатов (SO 4), мг/дм 3 , не более 0,5
Массовая концентрация хлоридов (Сl), мг/дм 3 , не более 0,02
Массовая концентрация алюминия (Аl), мг/дм 3 , не более 0,05
Массовая концентрация железа (Fe), мг/дм 3 , не более 0,05
Массовая концентрация кальция (Сa), мг/дм 3 , не более 0,8
Массовая концентрация меди (Сu), мг/дм 3 , не более 0,02
Массовая концентрация свинца (Рb), %, не более 0,05
Массовая концентрация цинка (Zn), мг/дм 3 , не более 0,2
Массовая концентрация веществ, восстанавливающих КМnО 4 (O), мг/дм 3 , не более 0,08
pH воды 5,4 - 6,6
Удельная электрическая проводимость при 20 ° С, Cименс/м, не более 5*10 -4

8. Нормы качества воды для электронной техники (по ОСТ 11.029.003-80, ASTM D-5127-90).

Параметры воды Марка воды по ОСТ 11.029.003-80 Марка воды по нормам ASTM D-5127-90
А Б В Е-1 Е-2 Е-3 Е-4
Удельное сопротивление при температуре 20 0 С, МОм/см 18 10 1 18 17,5 12 0,5
Содержание органических веществ (окисляемость), мг О 2 /л, не более 1,0 1,0 1,5
Общий органический углерод, мкг/л, не более 25 50 300 1000
Содержание кремниевой кислоты (в пересчете на SiO 3 -2), мг/л, не более 0,01 0,05 0,2 0,005 0,01 0,05 1,0
Содержание железа, мг/л, не более 0,015 0,02 0,03
Содержание меди, мг/л, не более 0,005 0,005 0,005 0,001 0,001 0,002 0,5
Содержание микрочастиц с размером 1-5 мкм, шт/л, не более 20 50 Не рег-ламент
Содержание микроорганизмов, колоний/мл, не более 2 8 Не рег-ламент 0,001 0,01 10 100
Хлориды, мкг/л, не более 1,0 1,0 1,0 100
Никель, мкг/л, не более 0,1 1,0 2 500
Нитраты, мг/л, не более 1 1 10 1000
Фосфаты, мг/л, не более 1 1 5 500
Сульфат, мг/л, не более 1 1 5 500
Калий, мкг/л, не более 2 2 5 500
Натрий, мкг/л, не более 0,5 1 5 500
Цинк, мкг/л, не более 0,5 1 5 500

9.Нормы качества воды для гальванических производств (по ГОСТ 9.314-90)

Таблица 1

Наименование показателя Норма для категории
1 2 3
Водородный показатель рН 6,0 - 9,0 6,5 - 8,5 5,4 - 6,6
Сухой остаток, мг/дм 3 , не более 1000 400 5,0 *
Жесткость общая, мг-экв/дм 3 , не более 7,0 6,0 0,35 *
Мутность по стандартной шкале, мг/дм 3 , не более 2,0 1,5 -
Сульфаты (SO 4 2-), мг/дм 3 , не более 500 50 0,5 *
Хлориды (Сl -), мг/дм 3 , не более 350 35 0,02 *
Нитраты (NO 3 -), мг/дм 3 , не более 45 15 0,2 *
Фосфаты (РO 4 3-), мг/дм 3 , не более 30 3,5 1,0
Аммиак, мг/дм 3 , не более 10 5,0 0,02 *
Нефтепродукты, мг/дм 3 , не более 0,5 0,3 -
Химическая потребность в кислороде, мг/дм 3 , не более 150 60 -
Остаточный хлор, мг/дм 3 , не более 1,7 1,7 -
Поверхностно-активные вещества (сумма анионных и неионогенных), мг/дм 3 , не более 5,0 1,0 -
Ионы тяжелых металлов, мг/дм 3 , не более 15 5,0 0,4
Железо 0,3 0,1 0,05
Медь 1,0 0,3 0,02
никель 5,0 1,0 -
цинк 5,0 1,5 0,2 *
хром трехвалентный 5,0 0,5 -
15. Удельная электрическая проводимость при 20 ° С, См/м, не более 2х10 -3 1х10 -3 5х10 -4

* Нормы ингредиентов для воды 3-й категории определяются по ГОСТ 6709.

Примечание. В системах многократного использования воды допускается содержание вредных ингредиентов в очищенной воде выше, чем в табл.1 но не выше допустимых значений в промывной ванне после операции промывки (табл.2).

Таблица 2

Наименование компонента или иона электролита Наименование операции, перед которой проводится промывка Наименование электролита, перед которым проводится промывка Допустимая концентрация основного компонента в воде после операции промывки с д, мг/дм 3
Общая щелочность в пересчете на едкий натр - Щелочной
Кислый или цианистый
800
100
Анодное окисление алюминия и его сплавов - 50
Красители (для окрашивания покрытий Ан. Окс) - 5
Кислота в пересчете на серную - Щелочной
Кислый
Цианистый
100
50
10
Наполнение и пропитка покрытий, сушка - 10
CN - общ, Sn 2+ , Sn 4+ , Zn 2+ , Cr 6+ , Pb 2+ Межоперационная промывка, сушка - 10
CNS - , Cd 2+ Межоперационная промывка, сушка - 15
Cu 2+ , Cu + Никелирование
Сушка
- 2
10
Ni 2+ Меднение
Хромирование, сушка
- 20
10
Fe 2+ Сушка - 30
Соли драгоценных металлов в пересчете на металл Сушка - 1

Примечания:

  1. За основной компонент (ион) данного раствора или электролита принимают тот, для которого критерий промывки является наибольшим.
  2. При промывке изделий, к которым предъявляются особо высокие требования, допустимые концентрации основного компонента могут устанавливаться опытным путем.

Концентрации основных ингредиентов в воде на выходе из гальванического производства приведены в табл.3

1.3. В гальваническом производстве следует применять системы многократного использования воды, обеспечивающие

10. Нормы качества воды для гемодиализа (по ГОСТ 52556-2006).

Наименование показателя Значение показателя
Массовая концентрация алюминия, мг/куб. дм, не более 0,0100
Массовая концентрация сурьмы, мг/куб. дм, не более 0,0060
Массовая концентрация мышьяка, мг/куб. дм, не более 0,0050
Массовая концентрация бария, мг/куб. дм, не более 0,1000
Массовая концентрация бериллия, мг/куб. дм, не более 0,0004
Массовая концентрация кадмия, мг/куб. дм, не более 0,0010
Массовая концентрация кальция, мг/куб. дм, не более 2,0
Массовая концентрация хлорамина, мг/куб. дм, не более 0,1000
Массовая концентрация хрома, мг/куб. дм, не более 0,0140
Массовая концентрация меди, мг/куб. дм, не более 0,1000
Массовая концентрация цианидов, мг/куб. дм, не более 0,0200
Массовая концентрация фторидов, мг/куб. дм, не более 0,2000
Массовая концентрация свободного остаточного хлора, мг/куб. дм, не более 0,5000
Массовая концентрация свинца, мг/куб. дм, не более 0,0050
Массовая концентрация магния, мг/куб. дм, не более 2,0
Массовая концентрация ртути, мг/куб. дм, не более 0,0002
Массовая концентрация нитратов, мг/куб. дм, не более 2,000
Массовая концентрация калия, мг/куб. дм, не более 2,0
Массовая концентрация селена, мг/куб. дм, не более 0,0050
Массовая концентрация натрия, мг/куб. дм, не более 50
Массовая концентрация сульфатов, мг/куб. дм, не более 100
Массовая концентрация олова, мг/куб. дм, не более 0,1000
Массовая концентрация цинка, мг/куб. дм, не более 0,1000
Удельная электрическая проводимость, мкСм/м, не более 5,0

11. Нормы качества "Вода очищенная" (по ФС 42-2619-97 и EP IV 2002).

Показатели ФС 42-2619-97 EP IV изд. 2002
Методы получения Дистилляция, ионный обмен, обратный осмос или другие подходящие методы Дистилляция, ионный обмен или другие подходящие методы
Описание Бесцветная прозрачная жидкость без запаха и вкуса
Качество исходной воды -
рН 5.0-7.0 -
Сухой остаток ≤0.001% -
Восстанавливающие вещества Отсутствие Альтернативный ООУ ≤0.1мл 0.02 KMnO 4 / 100 мл
Диоксид углерода Отсутствие -
Нитраты, нитриты Отсутствие ≤0.2 мг/л (нитраты)
Аммиак ≤0.00002% -
Хлориды Отсутствие -
Сульфаты Отсутствие -
Кальций Отсутствие -
Тяжелые металлы Отсутствие ≤0.1 мг/л
Кислотность/щелочность - -
Алюминий - ≤10мкг/л (для гемодиализа)
Общий органический углерод (ООУ) - ≤0,5 мг/л
Удельная электропроводность (УЭ) - ≤4.3 мкСм/см (20 о С)
Микробиологическая чистота ≤100 м.о./ мл
- ≤0.25 ЕЭ/мл для гемодиализа
Маркировка На этикетке указывается, что вода может использоваться для приготовления диализных растворов

12.Нормы качества «Вода для инъекций» (по ФС 42-2620-97 и EP IV 2002).

Показатели ФС 42-2620-97 EP IV изд. 2002
Методы получения Дистилляция, обратный осмос Дистилляция
Качество исходной воды - Вода, соотв. требованиям на воду питьевую Европейского Союза
Микробиологическая чистота ≤100 м.о./мл при отсутствии сем Enterobacteriaceae Staphylococcus aureus , Pseudomonas aeruginosa ≤10КОЕ/ 100мл
Пирогенность Апирогенна (биологический метод) -
Бактериальные эндотоксины (БЭ) ≤0.25ЕЭ/мл (изменение №1), ≤ 0.25 ЕЭ/мл
Удельная электропроводность - ≤1.1 мкСм/см (20 о С)
ООУ - ≤0.5 мг/л
Использование и хранение Используют свежеприготовленной или хранят при температуре от 5 о С до 10 о С или от 80 о С до 95 о С в закрытых емкостях из материалов, не изменяющих свойств воды, защищающих воду от попадания механических включений и микробиологических загрязнений, но не более 24 часов Хранится и распределяется в условиях, предотвращающих рост микроорганизмов и попадание других видов загрязнений.
Маркировка На этикетке емкостей сбора и хранения воды для инъекций должно быть обозначено «не простерилизовано» -
Показатель Ед. измерения огурец (грунт) томат (грунт) малообъемная культура
Водородный показатель (рН) ед. рН 6.0 - 7.0 6.0 - 7.0 6.0 - 7.0
Сухой остаток мг/л менее 500 менее 1000 500 - 700
Общая щелочность мг-экв/л менее 7.0 менее 7.0 менее 4.0
Кальций мг/л менее 350 менее 350 менее 100
Железо -"- 1,0 1,0 1,0
Марганец -"- 1,0 1,0 0,5
Натрий -"- 100 150 30 - 60
Медь -"- 1,0 1,0 0,5
Бор -"- 0,5 0,5 0,3
Цинк -"- 1,0 1,0 0,5
Молибден -"- 0,25 0,25 0,25
Кадмий -"- 0,001 0,001 0,001
Свинец -"- 0,03 0,03 0,03
Сульфаты (в пересчете на серу) -"- 60 100 60
Хлориды -"- 100 150 50
Фтор мг/л 0,6 0,6 0,6

ПДКВ - предельно допустимая концентрация вещества в воде водоема хозяйственно-питьевого и культурно-бытового водопользования, мг/л. Эта концентрация не должа оказывать прямого или косвенного влияния на организм человека в течение всей жизни, а также на здоровье последующих поколений, и не должна ухудшать гигиенические условия водопользования. ПДКВ.р. - Предельно допустимая концентрация вещества в воде водоёма, используемого для рыбохозяйственных целей, мг/л.
Оценка качества водных экосистем основана на нормативных и директивных документах, использующих прямые гидрогеохимические оценки. В табл. 2.4 в качестве примера приведены критерии оценки химического загрязнения поверхностных вод.
Для воды установлены предельно допустимые концентрации более чем 960 химических соединений, которые объедееинены в три группы по следующим лимитирующим показателям вредности (ЛПВ): санитарно-токсикологическому (с.-т.); общесанитарному (общ.); органолептическому (орг.).
ПДК некоторых вредных веществ в водной среде представлены в табл. 2.1.4.
Самые высокие требования предъявляются к питьевой воде. Государственный стандарт на воду, используемую для питья и в пищевой промышленности (СанПиН 2.1.4.1074-01), определяет благоприятные для человека органолептические показатели воды: вкус, запах, цвет, прозрачность, а также безвредность её химического состава и эпидемиологическую безопасность.
Таблица 2.1.4
ПДК вредных веществ в водных объектах хозяйственно-питьевого и
культурно-бытового водопользования, мг/л
(ГН 2.1.5.689-98)


Вещества

ЛПВ

пдк

1

2

3
/>Бор
С.-т.

0,5

Бром

С.-т.

0,2

Висмут

С.-т.

0,1

Гексахлорбензол

С.-т.

0,05

Диметиламин

С.-т.

0,1

Дифтордихлорметан (фреон)

С.-т.

10

Диэтиловый эфир

Орг.

0,3

Железо

Орг.

0,3

Изопрен

Орг.

0,005

Кадмий

С.-т.

0,001

Карбофос

Орг.

0,05

Керосин:



Окисленный

Орг.

0,01

Осветительный (ГОСТ 4753-68)

Орг.

0,05

Технический

Орг.

0,001

Кислота:



Бензойная

Общ.

0,6

Дифенилуксусная

Общ.

0,5

Масляная

Общ.

0,7

Муравьиная

Общ.

3,5

Уксусная

Общ.

1,2

Кислоты жирные синтетические

Общ.

0,1

С5-С20



Марганец

Орг.

0,1

Медь

Орг.

1

Метанол

С-т.

3

Молибден

С-т.

0,25

Мочевина

Общ.

1

Нафталин

Орг.

0,01

Нефть:



Многосернистая

Орг.

0,1

Прочная

Орг.

0,3

Нитраты по:



NO3-

С-т.

45

NO2-

С-т.

3,3

Полиэтиленамин

С-т.

0,1

Тиоцианаты

С-т.

0,1

Ртуть

С-т.

0,0005

Свинец

С-т.

0,03

Сероуглерод

Орг.

1

Скипидар

Орг.

0,2

Сульфиды

Общ.

Отсутствие

Тетраэтилсвинец

С-т.

Отсутствие

Трибутилфосфат

Общ.

0,01

Питьевая вода в любое время года не должна содержать менее 4 г/м кислорода, а наличие в ней минеральных примесей (мг/л) не должно превышать: сульфатов (SO4 -) - 500; хлоридов (Cl -) - 350; железа (Fe2+ + Fe3+) - 0,3; марганца (Mn2+) - 0,1; меди (Cu2+) - 1,0; цинка (Zn2+) - 5,0; алюминия (Al) - 0,5; метафосфатов (PO3 ") - 3,5; фосфатов (PO4
3") - 3,5; сухого остатка - 1000. Таким образом, вода пригодная для питья, если ее общая минерализованность не превышает 1000 мг/л. Очень малая минерализованность воды (ниже 1000 мг/л) тоже ухудшает её вкус, а вода, вообще лишённая солей (дистиллированная), вредна для здоровья, так как её употребление нарушает пищеварение и деятельность желез внутренней секреции. Иногда по согласованию с органами санитарно-эпидемиологической службы допускается содержание сухого остатка до 1500 мг/л.
Показатели, характеризующие загрязнение водоёмов и питьевой воды веществами, отнесёнными к 3 и 4 классам опасности, а также физико-химические свойства и органолептические характеристики воды относятся к дополнительным. Их используют для подтверждения степени интенсивности антропогенного загрязнения водоисточников, установленного по приоритетным показателям.
Применение различнх критериев оценки качества вод должно основываться на преимуществе требований того водопользования, чьи критерии жестче. Например, если водный объект одновременно служит для питьевых и рыбохозяйственных целей, то к оценке качества вод могут предъявлять более строгие требования (экологические и рыбохозяйственные).
ПХЗ-10 (показатель химического загрязнения). Этот показатель особенно важен для территорий, где загрязнение химическими веществами наблюдается сразу по нескольким веществам, каждый из которых многократно превышает ПДК. Его расчитывают только при выявлении зон чрезвычайной экологической ситуации и зон экологического бедствия.
Расчет ведут по десяти соединениям, максимально превышающим ПДК, по формуле:
ПХЗ-10 = С1/ПДК1 + С2/ПДК2 + С3/ПДК3 + ...С10/ПДК10,
где Сь С2, С3 ... Сю - концентрация химических веществ в воде: ПДК- рыбохозяйственные.
При определении ПХЗ-10 для химических веществ, по которым относительно удовлетворительное значение загрязнения вод отсутствует, отношение С/ПДК условно принимают равным 1.
Для установления ПХЗ-10 рекомендуют проводить анализ воды по максимально возможному числу показателей.
В дополнительные показатели включены общепринятые физикохимические и биологические характеристики, дающие общее представление о составе и качестве вод. Эти показатели используют для дополнительной характеристики процессов, происходящих в водных объектах. Кроме того, в дополнительные характеристики включают показатели, учитывающие способность загрязняющих веществ накапливаться в донных отложениях и гидробионтах.
Коэффициент донной аккумуляции КДА вычисляют по формуле:
КДА = Сд.о./Св,
где Сд. о. и Св - концентрация загрязняющих веществ соответственно в донных отложениях и воде.
Коэффициент накопления в гидробионтах:
Кн = Сг/Св,
где Сг - концентрация загрязняющих веществ в гидробионтах.
Критические концентрации химических веществ (КК) определяют по методике определения критических концентраций загрязняющих веществ, разработанной Госкомгидрометом в 1983 г.
Усредненные значения КК некоторых загрязняющих веществ составляют, мг/л: медь - 0,001 ...0,003; кадмий - 0,008... 0,020; цинк - 0,05...0,10; ПХБ - 0,005; бенз(а)пирен - 0,005.
При оценке состояния водных экосистем достаточно надежными показателями являются характеристики состояния и развития всех экологических групп водного сообщества.
При выделении рассматриваемых зон используют показатели по бактерио-, фито-, и зоопланктону, а также по ихтиофауне. Кроме того, для определения степени токсичности вод применяют интегральный показатель - биотестирование (на низших ракообразных). При этом соответствующая токсичность водной массы должна наблюдаться во всех основных фазах гидрологического цикла.
Основные показатели по фито- и зоопланктону, а также по зообентосу приняты на основании данных региональных служб гидробиологического контроля, характеризующих степень экологической деградации пресноводных экосистем.
Параметры показателей, предлагаемые для выделения на данной территории зон, должны формироваться на материалах достаточно продолжительных наблюдений (не менее трёх лет).
Следует иметь в виду, что индикаторные значения видов могут быть различны в разных климатических зонах.
При оценке состояния водных экосистем важны показатели по ихтиофауне, особенно для уникальных, особо охраняемых водных объектов и водоёмов первой и высшей рыбохозяйственной категории.
БПК - биологическая потребность в кислороде - количество кислорода, использованного при биохимических процессах окисления органических веществ (исключая процессы нитрификации) за определенное время инкубации пробы (2, 5, 20, 120 суток), мг О2 /л воды (БПКп - за 20 суток, БПК5 - за 5 суток).
Окислительный процесс в этих условиях осуществляется за счет микроорганизмов, использующих органические компоненты в качестве пищи. Метод БПК состоит в следующем. Исследуемую сточную воду после двухчасового отстаивания разбавляют чистой водой, взятой в таком количестве, чтобы содержащегося в ней кислорода с избытком хватило для полного окисления всех органических веществ в сточной воде. Определив содержание растворенного кислорода в полученной смеси, её оставляют в закрытой склянке на 2, 3, 5, 10, 15 суток, определяя содержание кислорода по истечении каждого из перечисленных периодов времени (период инкубации). Уменьшение количества кислорода в воде показывает, сколько его за это время израсходавано на окисление органических веществ, находящихся в сточной воде. Это количество, отнесенное к 1 л сточной воды, и является показателем биохимического потребления кислорода сточной водой за данный промежуток времени (БПК2, БПКз, БПК5, БПКю, БПК15).
Следует отметить, что биохимическое потребление кислорода не включает его расход на нитрификацию. Поэтому полное БПК следует проводить до начала нитрификации, которая начинается обычно спустя 15-20 суток. БПК сточных вод рассчитывается по формуле:
БПК = [(а1 ~ Ь1) ~ (а2 ~ b2)] Х 1000
V ’
где ai - концентрация кислорода в подготовленной для определения пробе в начале инкубации (в «нулевой день »), мг/л; а2 - концентрация кислорода в разбавляющей воде в начале инкубации, мг/л; b1 - концентрация кислорода в пробе в конце инкубации, мг/л; b2 - концентрация кислорода в разбавляющей воде в конце инкубации, мг/л; V - объем сточной воды, содержащейся в 1 л пробы, после всех произведенных разбавлений, мл.
ХПК - химическая потребность в кислороде, определенная би- хроматным методом, т.е. количество кислорода, эквивалентное количеству расходуемого окислителя, необходимого для окисления всех восстановителей, содержащихся в воде, мг О2/л воды.
Химическое потребление кислорода, выраженное числом миллиграммов кислорода на 1 л сточной воды, вычисляют по формуле:
Хпк - 8(а - b)х N1000
V ’
где а - объем раствора соли Мора, израсходованного на титрование в холостом опыте, мл; b - объем того же раствора, израсходованного на титрование пробы, мл; N - нормальность титрованного раствора соли Мора; V - объем анализируемой сточной воды, мл; 8 - эквивалент кислорода.
По отношению БПКп/ХПК судят об эффективности биохимического окисления веществ.

Вредных элементов являются установленным государственными актами правил. Несоблюдение указанных в нем предельных значений является правонарушением, за которое на нарушителей возлагается ответственность в соответствии с законом. Норматив ПДК в воде дает указания о тех предельных значениях загрязняющих веществ, содержание которых не влечет за собой нанесение ущерба для здоровья или жизни человека.

Основными источниками токсичных элементов являются многочисленные функционирующие предприятия промышленного комплекса. Их выбросы достаточно сильно почву и воду. Химические элементы, которые оказывают отрицательное влияние на окружающую нас среду, принято делить на группы в зависимости от степени их опасности для человека. К ним относят вещества, обладающие опасностью:

Чрезвычайной;

Высокой;

Умеренной.

Существует также группа опасных элементов.

ПДК в воде различных отражены в специально разработанных таблицах. Также существуют различные формулы, использование которых позволяет произвести расчет предельного допуска токсинов. Их применяют специалисты для осуществления контрольных мероприятий за используемой человеком водой. Такие действия может осуществить и любой из нас. Для этого достаточно проанализировать состояние питьевой воды в вашем доме и сравнить его с допустимыми нормами нахождения в ней различных элементов. Например, содержание в миллиграммах на литр не должно быть выше:

Сухого остатка - 1000;

Сульфатов - 500;

Хлоридов - 350;

Цинка - 5;

Железа - 0,3;

Марганца - 0,1;

Остаточных полифосфатов - 3,5.

Общая не должна превышать семи миллиграмм на литр.

Большое значение имеет и контроль над состоянием почвы. Именно земля служит аккумулятором и фильтром различных соединений. ПДК которые постоянно сбрасываются в почву, должна также соответствовать нормативам, так как постоянная миграция в ее верхних слоях достаточно сильно загрязняет всю окружающую среду.

Согласно санитарно-гигиеническим нормам, в почве может находиться не более:

0,02 мг/кг бензапирена;

3 мг/кг меди;

130 мг/кг нитратов;

0,3 мг/кг толуола;

23 мг/кг цинка.

При превышении ПДК в воде, органы, занимающиеся контролем состояния окружающей среды, будут определять причину этого явления. Довольно часто на увеличение в природе количества химических веществ оказывают влияние обычные бытовые отходы. В настоящее время особенно острой является проблема очистки водоемов от соединений фосфата и азота. Для того чтобы решить эту задачу, можно использовать три различных подхода:

Химический;

Биологический;

Совокупность первых двух методов.

Доведение до нормативного значения ПДК в воде с использованием химической очистки предполагает образование металфосфатов, которые, будучи нерастворимыми, оседают на дне специальной емкости. Данный процесс происходит при помощи реагентов. Использование метода химической очистки находит широкое применение на промышленных предприятиях. Проведение данных работ возможно только специально обученными сотрудниками.

Если при очистке воды используются фосфорные или Р-бактерии, то этот метод является биологическим. Это современный натуральный подход к недопущению превышения ПДК. Специальные зоны очистных емкостей снабжаются поочередно аэробными и анаэробными бактериями. Такой метод применяется в биофильтрах, септиках и аэротенках.

Совокупность биологического и химического способов используется в очистных системах, где возникает необходимость ускорения и усиления реакций разложения нечистот.