Эксцентриковый зажим своими руками. Циркулярка своими руками: чертежи, видео, описание. Верхняя поперечная прижимная планка

Зажимы эксцентриковые просты в изготовлении по этой причине нашли широкое применение в станочных приспособлениях. Применение эксцентриковых зажимов позволяет значительно сократить время на зажим заготовки но усилие зажима уступает резьбовым.

Эксцентриковые зажимы выполняются в сочетании с прихватами и без них.

Рассмотрим эксцентриковый зажим с прихватом.


Эксцентриковые зажимы не могут работать при значительных отклонениях допуска (±δ) заготовки. При больших отклонениях допуска зажим требует постоянной регулировки винтом 1.

Расчёт эксцентрика

Материалом применяемом для изготовления эксцентрика являются У7А, У8А с термообработкой до HR с 50....55ед, сталь 20Х с цементацией на глубину 0,8... 1,2 С закалкой HR c 55...60ед.

Рассмотрим схему эксцентрика. Линия KN делит эксцентрик на дв? симметричные половины состоящие как бы из 2 х клиньев, навернутых на «начальную окружность».


Ось вращения эксцентрика смещена относительно его геометрической оси на величину эксцентриситета «е».

Для зажима обычно используется участок Nm нижнего клина.

Рассматривая механизм как комбинированный состоящий из рычага L и клина с трением на двух поверхностях на оси и точки «m» (точка зажима), получим силовую зависимость для расчёта усилия зажима.


где Q - усилие зажима

Р - усилие на рукоятке

L - плечо рукоятки

r -расстояние от оси вращения эксцентрика до точки соприкосновения с

заготовкой

α - угол подъёма кривой

α 1 - угол трения между эксцентриком и заготовкой

α 2 - угол трения на оси эксцентрика

Во избежание отхода эксцентрика во время работы необходимо соблюдать условие самоторможение эксцентрика

где α - угол трения скольжения в точке касания заготовки ø - коэффициент трения

Для приближённых расчётов Q - 12Р Рассмотрим схему двухстороннего зажима с эксцентриком



Клиновые зажимы

Клиновые зажимные устройства нашли широкое применение в станочных приспособлениях. Основным элементом их является одно, двух и трёхскосые клинья. Использование таких элементов обусловлено простотой и компактностью конструкций, быстротой действия и надёжностью в работе, возможностью использования их в качестве зажимного элемента, действующего непосредственно на закрепляемую заготовку, так и качестве промежуточного звена, например, звена-усилителя в других зажимных устройствах. Обычно используются самотормозящиеся клинья. Условие самоторможения односкосого клина выражается зависимостью

α > 2ρ

где α - угол клина



ρ - угол трения на поверхностях Г и Н контакта клина с сопрягаемыми деталями.

Самоторможение обеспечивается при угле α = 12°, однако для предотвращения того чтобы вибрации и колебания нагрузки в процессе использования зажима не ослабли крепления заготовки, часто применяют клинья с углом α <12°.

Вследствие того, что уменьшение угла приводит к усилению

самотормозящих свойств клина, необходимо при конструировании привода к клиновому механизму предусматривать устройства, облегчающие вывод клина из рабочего состояния, так как освободить нагруженный клин труднее, чем вывести его в рабочее состояние.


Этого можно достичь путём соединения штока приводного механизма с клином. При движении штока 1 влево он проходит путь «1» в холостую, а затем ударяясь в штифт 2, запрессованный в клин 3, выталкивает последний. При обратном ходе штока так же ударом в штифт заталкивает клин в рабочее положение. Это следует учитывать в случаях, когда клиновой механизм приводится в действие пневмо или гидроприводом. Тогда для обеспечения надёжности работы механизма следует создавать разное давление жидкости или сжатого воздуха с разных сторон поршня привода. Это различие при использовании пневмоприводов может быть достигнуто применением редукционного клапана в одной из трубок, подводящих воздух или жидкость к цилиндру. В случаях, когда самоторможение не требуется, целесообразно применять ролики на поверхностях контакта клина с сопряжёнными деталями приспособления, тем самым облегчается ввод клина в исходное положение. В этих случаях обязательно стопорение клина.

Без циркулярной пилы сложно себе представить столярную мастерскую, так как самая основная и распространенная операция – это именно продольное пиление заготовок. О том, как сделать самодельную циркулярную пилу и пойдет речь в данной статье.

Введение

Станок состоит из трех основных конструктивных элементов:

  • основание;
  • распиловочный стол;
  • параллельный упор.

Основание и сам распиловочный стол – это не очень сложные конструктивные элементы. Их конструкция очевидна и не столь сложна. Поэтому в данной статье мы будем рассматривать наиболее сложный элемент – параллельный упор.

Итак, параллельный упор – это подвижная часть станка, которая является направляющей для заготовки и именно вдоль нее движется заготовка. Соответственно от параллельного упора зависит качество реза по тому, что если упор будет не параллельным, то возможно или заклинивание заготовки или кривой пил.

Кроме того, параллельный упор циркулярной пилы должен быть довольно жесткой конструкцией, так как мастер прилагает усилия, прижимая заготовку к упору, и если будут возможны смещения упора, то это приведет к непараллельности с последствиями, указанными выше.

Существуют различные конструкции параллельных упоров в зависимости от приемов его крепления к циркулярному столу. Приведем таблицу с характеристиками этих вариантов.

Конструкция параллельного упора Достоинства и недостатки
Крепление в двух точках (спереди и сзади) Достоинства: · Довольно жесткая конструкция, · Позволяет поместить упор в любое место циркулярного стола (слева или справа от пильного диска); · Не требует массивности самой направляющейНедостаток: · Для крепления мастеру нужно произвести зажим одного конца спереди станка, а также обойти станок вокруг и закрепить противоположный конец упора. Это очень неудобно при подборе необходимого положения упора и при частой переналадке является существенным недостатком.
Крепление в одной точке (спереди) Достоинства: · Менее жесткая конструкция, чем при креплении упора в двух точках, · Позволяет поместить упор в любое место циркулярного стола (слева или справа от пильного диска); · Для изменения положения упора, достаточно выполнить его фиксация с одной стороны станка, там, где располагается мастер в процессе пиления.Недостаток: · Конструкция упора должна быть массивной, чтобы обеспечить необходимую жесткость конструкции.
Крепление в пазу циркулярного стола Достоинства: · Быстрая переналадка.Недостаток: · Сложность конструкции, · Ослабление конструкции циркулярного стола, · Фиксированное положение от линии пильного диска, · Довольно сложная конструкция для самостоятельного изготовления, особенно из дерева (делается только из металла).

В данной статье мы разберем вариант создания конструкции параллельного упора для циркулярки с одной точкой крепления.

Подготовка к работе

Прежде чем приступить к работе, необходимо определиться с необходимым набором инструмента и материалов, которые понадобятся в процессе работы.

Для работы будут использованы следующие инструменты:

  1. Циркулярная пила или можно использовать .
  2. Шуруповерт.
  3. Болгарка (Угло-шлифовальная машинка).
  4. Ручной инструмент: молоток, карандаш, угольник.

В процессе работы также понадобятся следующие материалы:

  1. Фанера.
  2. Массив сосны.
  3. Стальная трубка с внутренним диаметром 6-10 мм.
  4. Стальной стержень с наружным диаметром 6-10 мм.
  5. Две шайбы с увеличенной площадью и внутренним диаметром 6-10 мм.
  6. Саморезы.
  7. Столярный клей.

Конструкция упора циркулярного станка

Вся конструкция состоит из двух основных частей – продольной и поперечной (имеется в виду – относительно плоскости пильного диска). Каждая из этих частей жестко связана с другой и является сложной конструкцией, которая включает в себя набор деталей.

Усилие прижатия достаточно большие, чтобы обеспечить прочность конструкции и надежно зафиксировать весь параллельный упор.

С другого ракурса.

Общий состав всех деталей выглядит следующим образом:

  • Основание поперечной части;
  1. Продольная часть
    , 2шт.);
  • Основание продольной части;
  1. Зажим
  • Рукоятка эксцентрика

Изготовление циркулярки

Подготовка заготовок

Нужно отметить пару моментов:

  • плоскостные продольные элементы делаются из , а не из массива сосны, как другие детали.

На 22 мм сверлим отверстие в торце под ручку.

Лучше это сделать с помощью сверления, но можно и просто набить гвоздем.

В циркулярной пиле, используемой для работы, используется самодельная подвижная каретка из (или как вариант можно сделать «на скорую руку» фальш-стол), который не очень жалко деформировать или испортить. В эту каретку в размеченное место заколачиваем гвоздь и откусываем шляпку.

В итоге получим ровную цилиндрическую заготовку, которую нужно обработать ленточной или эксцентриковой шлифмашинкой.

Делаем рукоятку – это цилиндр диаметром 22 мм и длиной 120-200 мм. Затем вклеиваем ее в эксцентрик.

Поперечная часть направляющей

Приступаем к изготовлению поперечной части направляющей. Она состоит, как было сказано выше из следующих деталей:

  • Основание поперечной части;
  • Верхняя поперечная прижимная планка (с косым торцом);
  • Нижняя поперечная прижимная планка (с косым торцом);
  • Торцевая (фиксирующая) планка поперечной части.

Верхняя поперечная прижимная планка

Обе прижимные планки – верхняя и нижняя имеют один торец не прямой 90º, а наклонный («косой») с углом 26,5º (если быть точным, то 63,5 º). Эти углы мы уже соблюли при распиловке заготовок.

Верхняя поперечная прижимная планка служит для перемещения по основанию и дальнейшей фиксации направляющей прижатием к нижней поперечной прижимной планке. Она собирается из двух заготовок.

Обе прижимные планки готовы. Нужно проверить плавность хода и удалить все дефекты, мешающие ровному скольжению, кроме того, нужно проверить плотность прилегания наклонных кромок; зазоров и щелей быть не должно.

При плотном прилегании прочность соединения (фиксация направляющей) будет максимальной.

Сборка поперечной всей части

Продольная часть направляющей

Вся продольная часть состоит из:

    , 2шт.);
  • Основание продольной части.

Этот элемент выполняется из по тому, что поверхность ламинированная и более гладкая – это уменьшает трение (улучшает скольжение), а также более плотная и прочная – более долговечная.

На этапе формирования заготовок мы уже напилили их в размер, осталось только облагородить кромки. Это делается с помощью кромочной ленты.

Технология кромления проста (можно даже утюгом приклеить!) и понятна.

Основание продольной части

А также дополнительно фиксируем саморезами. Не забываем соблюсти угол 90º между продольными и вертикальными элементами.

Сборка поперечной и продольной частей.

Вот тут ОЧЕНЬ!!! важно соблюсти угол 90º, так как именно от него будет зависеть параллельность направляющей с плоскостью пильного диска.

Установка эксцентрика

Установка направляющей

Пришло время закрепить всю нашу конструкцию на циркулярный станок. Для этого нужно прикрепить планку поперечного упора к циркулярному столу. Крепление, как и везде, осуществляем на клей и саморезы.

… и считаем работу законченной – циркулярная пила своими руками готова.

Видео

Видео, по которому делался этот материал.

Эксцентриковые зажимы,в противоположность винтовым, являются быстродействующими. Достаточно повернуть рукоятку такого зажима менее чем на 180°, чтобы закрепить заготовку.

Схема действия эксцентрикового зажима показана на рисунке 7. При повороте рукоятки радиус поворота эксцентрика увеличивается, зазор между ним и деталью (либо рычагом) уменьшается до нуля; зажим заготовки производится за счет дальнейшего «уплотнения» системы: эксцентрик - деталь - приспособление.

Рисунок 7- Схема действия эксцентрикового зажима

Для определения основных размеров эксцентрика следует знать величину усилия зажима заготовки Q , оптимальный угол поворота рукоятки для зажима заготовки ρ, допуск на толщину закрепляемой заготовки δ.

Если угол поворота рычага неограничен (360°), то величину эксцентриситета кулачка можно определить по уравнению

где S 1 -установочный зазор под эксцентриком, мм;

S 2 -запас хода эксцентрика, учитывающий его износ, мм;

Допуск на толщину заготовки, мм;

Q – усилие зажима заготовки, Н;

L - жесткость зажимного устройства, Н/мм (характери­зует величину отжима системы под воздействием за­жимных сил).

Если угол поворота рычага ограничен (менее 180°), то вели­чину эксцентриситета можно определить по уравнению

Радиус наружной поверхности эксцентрика определяется из условия самоторможения: угол подъема эксцентрика , состав­ленный зажимаемой поверхностью и нормалью к радиусу его вращения, всегда должен быть меньше угла трения, т. е.

(f =0,15 для стали),

где D и R -соответственно диаметр и радиус эксцентрика.

Усилие зажима заготовки можно определить по формуле

где Р - усилие на рукоятке эксцентрика, Н (принимается обычно ~ 150 Н);

l - длина рукоятки, мм;

–углы трения между эксцентриком и деталью, меж­ду цапфой и опорой эксцентрика;

R 0 - радиус вращения эксцентрика, мм.

Для приближенного расчета усилия зажима можно восполь­зоваться эмпирической формулой Q12 Р (при t=(4-5) R и Р=150 Н).

а, в - для поджатая плоских заготовок; б - для крепления плоских заготовок с помощью качающегося коромысла; г - для стягивания обечаек с помощью гибкого хомута

Рисунок 8 - Примеры различных по конструкции эксцентриковых зажимов

Задача № 3 “Расчет парметров эксцентрикового зажима ”

По вводным данным тьютора подберите и рассчитайте параметры эксцентрикового зажима (рисунок 7), если изделие необходимо прижать с усилием Q , жесткость зажимного устройства L , угол поворота рычага неограничен, установочный зазор под эксцентриком S 1 , запас хода эксцентрика, учитывающий его износ S 2 , допуск на толщину заготовки ,сварщик правша.

    Рассчитайте диаметр эксцентрика.

    Определите длину рукоятки эксцентрика l .

    Составьте эскиз зажима. Подберите материал, из которого должен быть изготовлен зажим.

Таблица 4 – Варианты задачи

Q , кН

L , Н/мм

S 1 , мм

S 2 , мм

При больших программах выпуска изделий широко применяют быстродействующие зажимы. Одним из видов таких ручных зажимов являются эксцентриковые, в которых поворотом эксцентриков создаются усилия зажима.

Значительные усилия при малой площади касания рабочей поверхности эксцентрика могут вызвать повреждение поверхности детали. Поэтому обычно эксцентрик действует на деталь через подкладку, толкатели, рычаги или тяги.

Зажимные эксцентрики могут быть с различным профилем рабочей поверхности: в виде окружности (круглые эксцентрики) и со спиральным профилем (в виде логарифмической или архимедовой спирали).

Круглый эксцентрик представляет собой цилиндр (валик или кулачок), ось которого расположена эксцентрично по отношению к оси вращения (фиг. 176, а, бив). Такие эксцентрики наиболее просты в изготовлении. Для поворота эксцентрика служит рукоятка. Эксцентриковые зажимы выполняют часто в виде кривошипных валиков с одной или двумя опорами.

Эксцентриковые зажимы всегда ручные, поэтому основным условием правильной работы их является сохранение углового положения эксцентрика после его поворота для зажатия - «самоторможение эксцентрика». Это свойство эксцентрика определяется отношением диаметра О цилиндрической рабочей поверхности к эксцентриситету е. Это отношение называется характеристикой эксцентрика. При определенном отношении – условие самоторможения эксцентрика выполняется.

Обычно диаметром Б круглого эксцентрика задаются из конструктивных соображений, а эксцентриситет е рассчитывают исходя из условий самоторможения.

Линия симметрии эксцентрика делит его на две части. Можно представить себе два клина, одним из которых при повороте эксцентрика закрепляется деталь. Положение эксцентрика при его контакте с поверхностью детали минимального размера.

Обычно положение участка профиля эксцентрика, который участвует в работе, выбирают так. чтобы при горизонтальном положении линий 0\02 эксцентрик касался бы точкой с2 зажимаемой летали средних размеров. При зажиме деталей с максимальными и минимальными размерами детали будут касаться соответственно точек сI и с3 эксцентрика, симметрично расположенных относительно точки с2. Тогда активным профилем эксцентрика будет дуга С1С3. При этом часть эксцентрика, ограниченную на фигуре штриховой линией, можно удалить (при этом ручку надо переставить в другое место).

Угол а между зажимаемой поверхностью и нормалью к радиусу вращения называют углом подъема. Он различен при разных угловых положениях эксцентрика. Из развертки видно, что при касании детали и эксцентрика точками а и Б угол а равен нулю. Его величина наибольшая при касании эксцентрика точкой с2. При малых углах клиньев возможно заедание, при больших - самопроизвольное ослабление. Поэтому зажим при касании с деталью точек эксцентрика а и б нежелателен. Для спокойного и надежного закрепления детали необходимо, чтобы эксцентрик соприкасался на участке С\С3 с деталью, когда угол а не бывает равен нулю и не может колебаться в широких пределах.

Простой в изготовлении, обладающий большим коэффициентом усиления, достаточно компактный эксцентриковый зажим, являющийся разновидностью кулачковых механизмов, обладает еще одним, несомненно, главным своим преимуществом...

...– мгновенным быстродействием. Если для того, чтобы «включить – выключить» винтовой зажим часто необходимо сделать минимум пару оборотов в одну сторону, а затем в другую, то при использовании эксцентрикового зажима достаточно повернуть рукоятку всего на четверть оборота. Конечно, по усилию зажима и величине рабочего хода превосходят эксцентриковые, но при постоянной толщине закрепляемых деталей в серийном производстве применение эксцентриков чрезвычайно удобно и эффективно. Широкое использование эксцентриковых зажимов, например, в стапелях для сборки и сварки малогабаритных металлоконструкций и элементов нестандартного оборудования существенно повышает производительность труда.

Рабочую поверхность кулачка чаще всего выполняют в виде цилиндра с окружностью или спиралью Архимеда в основании. Далее в статье речь пойдет о более распространенном и более технологичном в изготовлении круглом эксцентриковом зажиме.

Размеры кулачков эксцентриковых круглых для станочных приспособлений стандартизованы в ГОСТ 9061-68*. Эксцентриситет круглых кулачков в этом документе задан равным 1/20 от наружного диаметра для обеспечения условия самоторможения во всем рабочем диапазоне углов поворота при коэффициенте трения 0,1 и более.

На рисунке ниже изображена геометрическая схема механизма зажима. К опорной поверхности прижимается фиксируемая деталь в результате поворота за рукоятку эксцентрика против часовой стрелки вокруг жестко закрепленной относительно опоры оси.

Показанное положение механизма характеризуется максимально возможным углом α , при этом прямая, проходящая через ось вращения и центр окружности эксцентрика перпендикулярна прямой, проведенной через точку контакта детали с кулачком и точку центра наружной окружности.

Если повернуть кулачок на 90˚ по часовой стрелке относительно изображенного на схеме положения, то между деталью и рабочей поверхностью эксцентрика образуется зазор равный по величине эксцентриситету e . Этот зазор необходим для свободной установки и снятия детали.

Программа в MS Excel:

В примере, показанном на скриншоте, по заданным размерам эксцентрика и силе, приложенной к рукоятке, определяется монтажный размер от оси вращения кулачка до опорной поверхности с учетом толщины детали, проверяется условие самоторможения, вычисляются усилие зажима и коэффициент передачи силы.

Значение коэффициента трения «деталь — эксцентрик» соответствует случаю «сталь по стали без смазки». Величина коэффициента трения «ось — эксцентрик» выбрана для варианта «сталь по стали со смазкой». Уменьшение трения в обоих местах повышает силовую эффективность механизма, но уменьшение трения в области контакта детали и кулачка ведет к исчезновению самоторможения.

Алгоритм:

9. φ 1 =arctg (f 1 )

10. φ 2 =arctg (f 2 )

11. α =arctg (2*e /D )

12. R =D/ (2*cos (α ))

13. A =s +R *cos (α )

14. e R *f 1 + (d /2) * f 2

Если условие выполняется – самоторможение обеспечивается.

15. F = P * L * cos (α )/(R * tg (α +φ 1 )+(d /2)* tg (φ 2 ))

1 6 . k = F /P

Заключение.

Выбранное для расчетов и изображенное на схеме положение эксцентрикового зажима является самым «невыгодным» с точки зрения самоторможения и выигрыша в силе. Но выбор такой не случаен. Если в таком рабочем положении рассчитанные силовые и геометрические параметры удовлетворяют разработчика, то в любых иных положениях эксцентриковый зажим будет обладать еще большим коэффициентом передачи силы и лучшими условиями самоторможения.

Уход при проектировании от рассмотренного положения в сторону уменьшения размера A при сохранении без изменений прочих размеров приведет к уменьшению зазора для установки детали.

Увеличение размера A может создать ситуацию при износе в процессе эксплуатации эксцентрика и значительных колебаниях толщины s , когда зажать деталь окажется просто невозможно.

В статье умышленно ничего не упоминалось до сих пор о материалах, из которых можно изготовить кулачки. ГОСТ 9061-68 рекомендует для повышения долговечности использовать износостойкую поверхностно-цементированную сталь 20Х. Но на практике эксцентриковый зажим выполняют из самых разнообразных материалов в зависимости от назначения, условий эксплуатации и располагаемых технологических возможностей. Представленный выше расчет в Excel позволяет определять параметры зажимов для кулачков из любых материалов, только нужно не забывать изменять в исходных данных значения коэффициентов трения.

Если статья оказалась Вам полезной, а расчет нужным, Вы можете оказать поддержку развитию блога, сделав перевод небольшой суммы на любой (в зависимости от валюты) из указанных кошельков WebMoney: R377458087550, E254476446136, Z246356405801.

Уважающих труд автора прошу скачивать файл с расчетной программой после подписки на анонсы статей в окне, размещенном в конце статьи или в окне наверху страницы!